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Abstract. The chemical processes of the formation of copper sulfide and copper indium disulfide

by chemical spray pyrolysis were investigated. The use ofCuCl, or (CuCl, + InCl3) and SC(NH;),
as precursors led to intermediate metalorganic complex compounds in the starting water solutions.

It was established that copper oxidation state is +1 in these intermediates and coordination of ligand
to metal atom occurs through the sulphur atom. The chemical composition of the compound on the

base of CuCl, and SC(NH;), responded to Cu(SCN,H4)CI-H,O which crystallised in tetragonal
crystal system. Lattice parameters for Cu(SCN,H4)CI-H,O were calculated. Dehydration
temperature for Cu(SCN,H4)CI-H,O is 120°C and thermal destruction temperature was 210°C at

which copper sulfide as one of the pyrolysis products formed.

Key words: spray pyrolysis, formation chemistry, copper sulfide, copper indium disulfide, copper
chloride thiourea compounds, thermal destruction.

1. INTRODUCTION

As compared to the standard techniques of vacuum deposition and

chemical vapour deposition, chemical spray pyrolysis (CSP) is an

inexpensive method for depositing large area thin films of different

materials. CSP is often used for producing thin film gas sensors and

component layers in ZnO/CdS/CuInS,(CIS) type solar cells.

The properties of sprayed metal oxide films correspond to the

requirements, which are presented for gas sensors and optical windows

in solar cells [ 2]. During last years, an interest in the sprayed CdS

films [3's] and CIS adsorber layers [6'B] has increased due to the

possibility to produce ZnO/CdS/CIS type solar cells completely by CSP.

Although cell efficiencies are markedly lower than those produced by
standard techniques (4 versus 10%) [s]‚ it is believed that further efforts

could reduce this difference [s’ 9].
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Several authors have studied the influence of technological parameters,
such as chemical composition of spraying solution, molar ratio of

precursors, growth temperature and type of carrier gas, to obtain thin films

of CIS type materials with parameters acceptable for solar cells [° ® !0),
Their results confirm that properties of thin films depend on the above-

mentioned parameters. But only few authors have investi%ated the

chemistry of CIS formation during the spray process > M. й в

established that a similarity exists between the chemical processes
occurring in CdS formation and in CIS type material thin films, if

appropriate metal chlorides and thiourea or its derivates are used as

precursors [’]. The mechanism of CIS formation by spra¥ [i)š/rolysis is not

clear yet, but our investigations on sprayed CdS films ['% 13] confirm the

importance of researches in the field of formation chemistry. The results

obtained provide us with data prerequisite to produce films with predicted
parameters.

The aim of this study was to investigate the interaction of precursors as

CuCl, and SC(NH;), or CuCl,, InCl; and SC(NH;,), in starting water

solutions. The spraying of these solutions onto heated substrate gave
Cu,_,S or CulnS, thin films as a desired final product. The phases formed

in starting solution and their thermal stability will be discussed.

2. EXPERIMENT

Copper(ll)chloride dihydrate GR (Merck index 1.02733), thiourea for

synthesis (Merck index 818591) and indium(lll)chloride prepared from

indium (extra pure) and hydrochloric acid GR (Merck index 1.00319)
were used as initial chemicals in our experiments. Deionised water was

used for solutions.

The precipitation of the intermediate compound occurred during 2 up to

12 hours in diluted water solutions containing CuCl, (or InCl; + CuCl,)
and SC(NH,), with concentrations typical of spraying solutions (Table 1,
section 1). Deposition did not occur in solutions containing InCl; and

SC(NH,),. Larger amounts of intermediate compounds were obtained by
mixing more concentrated water solutions of precursors at different molar

ratios of cation and ligand (Table 1, section 2) and used for X-ray
diffraction (XRD), chemical and thermal analysis. All precipitates were

separated at room temperature, filtered, rinsed with deionised water and

dried in a thermostat at 50°C.

Cu,_,S and CulnS, thin films were prepared by the spray pyrolysis

process using comgressed air or nitrogen as carrier gases and the set-up
described earlier [] ].

The intermediates formed were characterised by infra-red (IR)

spectroscopy, XRDA and chemical analysis. The FTIR spectra was

obtained in 4000400 cm™' range with a Nicolet Magna IR 750 instrument

using the KBr pellet technique or with Bomen FTIR MB 122 instrument.

The XRD patterns of the intermediates and thin films were recorded using
a DRON-2 diffractometer with monochromatic Cu K, radiation. The
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elemental composition of the samples was checked by energy dispersive
spectroscopy (EDS). Concentrations of copper and chlorine in the

intermediate were determined by atom absorption spectroscopy and

amperometric titration with rotating Pt electrode, respectively. Thermal

stability of the intermediates was examined on OD-102 type
derivatograph.

3. RESULTS AND DISCUSSION

Precipitation was observed in spraying solutions kept in laboratory
conditions. The precipitate appeared during 2 up to 12 hour period
depending on the solution concentration. Table 1 shows the compositions
of prepared solutions and their concentrations.

The changes in solution colour were observed when higher
concentrations of CuCl, and SC(NH,), solutions were mixed. The blue

colour, typical of CuCl, solution, changed up to green after mixing with

SC(NH;), solution. The acidity of the solution increased simultaneously

11 CuCl, 0.005

SC(NH,), 0.01

12 CuCl, 0.01

SC(NH,), 0.01

I 13 CuCl, 0.01

SC(NH,), 0.02

14 InCl, 0.005

SC(NH,), 0.01

16 CuCl, 0.002

InCl, 0.002

SC(NH,), 0.006

III-21-2 CuCl, 0.2

SC(NH,), 0.4

Ш-21-3 CuCl, 0.2

SC(NH,), 0.6

П 1-29-2 CuCl, 0.033

SC(NHy), 0.066

1M-30-3 CuCl, 0.033

SC(NH,), 0.033

1I-30-2 CuCl, 0.02

InCl, 0.02

SC(NH,), 0.06

Table 1

List of the prepared solutions
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with the solution colour change. Mixing of 50 ml CuCl, (¢ = 0.1 mol/1,
рН = 3.9) апа оЁ 100 ml SC(NH,), (c=o.l molVl, pH=6.4) water

solutions gave the final solution with pH = 2.8. An increase in acidity was

observed also in the diluted solutions. The observed phenomena indicated

to the change of the oxidation state of copper from +2 to +1 in the solution

['3]. A white precipitate formed in colourless solution as a final result of

the interaction of precursors. The precipitate consisted of needle shape
crystallites of size from some twenty up to some hundred micrometers

(Fig. 1).

The vibration frequencies for the characteristic groups of ligand and

formed intermediates synthesised at different molar ratios and

concentrations of precursors (Table 2) revealed that v(CN) were shifted to

higher frequencies while v(CS) were shifted to those lower than the

frequencies of the free ligand — thiourea. The result confirms that

coordination of ligand to metal atom occurs through the sulphur atom [l6].
The results of IR measurements confirm the formation of coordination

compound in CuCl, + SC(NH,), solution as well as in CuCl, + InCl; +

SC(NH,), solution.

The X-ray diffraction patterns of the intermediates separated from the

solutions with different molar ratios and concentrations of CuCl, and

SC(NH,), (Table 1, section 2) were identical, and diffractogram of 111-29-

2 is demonstrated in Fig. 2.

Fig. 1. SEM micrograph of copper chloride thiourea complex compound.



102

The XRD pattern of the intermediate separated from CuCl, + InCl; +

SC(NH,), solution was different from that presented in Fig. 2. Thus,
formation of copper sulfide and copper indium disulfide passes through
different complex compounds. This paper studied the intermediate formed

in CuCl, + SC(NH;), solution.

AXES 1.4 A program was used to identify the diffractograms. The

diffractograms do not belong to tris(thiourea)copper chloride —

Cu(SCN,H,);CI (PDF 18-1964), the only copper chloride thiourea

compound is presented in JCPDS files (PDF-1, sets 1-42). Five more

intensive experimental XRD peaks without specification of crystal s;ystem
forCu(SCN,H4)CI] and Cu(SCN,H4)C]- 1/2H,0 are described in ['7]. The

recorded X-ray diffraction patterns of the investigated compounds were

close to the XRD pattern of hydrate phase. Chemical analysis of the

intermediate confirmed that concentrations of Cu and Cl in the

intermediate respond to concentrations оЁ Cu and Cl м

mono(thiourea)copperchloride hydrate Cu(SCN,H,4)CI-H,O (Calc.: Cu,

32.9; Cl, 18.4 (mass %); Found: Cu, 32.1; Cl, 18.2 (mass %) for the

material 111-29-2).

* IR spectra measured on Bomen FTIR MB 122 instrument.
** IR spectra measured on Nicolet Magna IR 750 instrument.

Material Material Material Material

Characteristic No.12* No. 13* No. 16* III-29-2**

group SC(NH2)2 Cu:$ Cu:S Cu:In:S Cu:S

1:1 1:2 1:1:3 1:2

У(С№) 1472 1520 1520 1520

1512 1512 1512 1516

1470 1470 1494

v(HNC) 1414 1450 1450 1440 1432

v(CS) 1415 1419 1418 1417

1400 1400 1400 1400

У(С№) 1086 1103 1112 1109 1109

1101 1102

v(CS) 732 724 713 732 698

713 704 706

v(CS) 632 611 610 607 608

S(NCN)

S(NCN) 487 483 483 467 474

Table 2

Oscillation frequencies (cm™) of the characteristic groups of ligand and intermediate

compounds
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The diffraction lines of the complex compound were identified as

belonging to the tetragonal crystal systemby the analogy of recorded XRD

patterns to Rbßr-thiourea XRD pattern (PDF 20-1485), and lattice

parameters for Cu(SCN,H,4)CI-H,O were calculated (Table 3).

Thermal analysis (TG, DTG, DTA) of Cu(SCN,H4)CII-H,O indicated

the dehydration at 120°C and the thermal destruction at temperatures
higher than 210°C. Metal sulfide is one of the thermal decomposition
products.

Fig. 2. X-ray diffractogram of the intermediate complex compound formed in solution of

CUCI2 + SC(NHz)z.

Formula Cu(SCN,H,)CI-H,0 (111-29-2)

Radiation CuK, (A= 1.5405980 A)

Unit cell data a=212137+-0.0187 A
Ь= 21.2137 + - 0.0187 А
c= 8.7952 +- 0.0014 А
а = В = у =90.000+—0.000°

Crystal system Tetragonal

Table 3

Unit cell data for Cu(SCN,H,)CI-H,O
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The spray process of the solutions of CuCl, and SC(NH,), as

precursors leads tocopper sulfide thin films (Fig. 3). The concentrations of

the precursors in the initial solutions for CSP of copper sulfide were the

same as shown in Table 1 (section 1) (0.005 - 0.01 mol/l, Cu:S=l:l,
1:2). Pressured air and nitrogen were used as carrier gases and

temperature of soldered tin bath varied from 250 up to 450°C. The

formation of hexagonal copper sulfide films was detected at growth
temperature about 210°C. The increase in the growth temperature up to

270°C gave CuS films exhibiting a strong orientation in the (001)
direction. At higher temperatures, the formation of copper sulfate was

detected. An inert media is needed to avoid the formation of copper sulfate

by the oxidation of copper sulfide.

4. CONCLUSIONS

It was established that the formation of copper sulfide (or copper
indium disulfide) films by CSP of water solutions of CuCl, (or

CuCl, + InCl3) and SC(NH,), onto heated substrate passes through the

stage of the intermediate complex compound formed in initial solution.

Copper oxidation state is +1 and coordination of ligand to metal atom

occurs through the sulphur atom in these compounds. As a result of

interaction of CuCl, and SC(NH,), in initial solutions, the intermediate

complex compound Cu(SCN,H,4)CI-H,O forms. The lattice parameters
for Cu(SCN,H4)CI-H,O were calculated. Thermal destruction of the

Fig. 3. X-ray diffractrograms of copper sulfide thin films sprayed at different temperatures. Initial

solution: CuCl, + SC(NH;); = 1:2, [CuCl;] = 0.002 mol/l. -
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intermediate complex at temperatures higher than 210°C leads to the

formation of copper sulfide.
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VAHEÜHENDID VASKSULFIIDIDE MOODUSTUMISEL

KEEMILISE PIHUSTAMISE MEETODIL

Malle KRUNKS, Enn MELLIKOYV, Olga BIJAKINA

On uuritud vasksulfiidi ja vaskindiumdisulfiidi moodustumist kee-

milise pihustamise meetodil. Kasutades ldhteainetena CuCl, või

(CuCl; + InCl3) jaSC(NH,), toimub metallorgaaniliste kompleksiihendite
moodustumine ldhtevesilahustes. Vase oksiidatsiooniaste nendes iihendites
оп +1 ja ligandi koordinatsioon metalli aatomiga toimub véidvli aatomi
kaudu. CuCl, ja SC(NH,), baasil moodustunud kompleksiithendi kee-
miline koostis vastab Cu(SCN,H,)CI-H,O koostisele ja iihendil on tetra-

gonaalne kristallstruktuur. On méératud Cu(SCN,H,4)CI-H,O vorepara-
meetrid. Cu(SCN,H,)CI-H,O dehiidradatsiooni temperatuur on 120°C ja
termiline lagunemine toimub 210°C juures vasksulfiidi kui iihe piiroliiiisi
produkti moodustumisega.
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