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Abstract. A substantial amount of industrial hard metal wastes, particularly tungsten carbide-based

ones, produced in Estonia, need recycling (retreatment or reuse). Hard metal wastes are produced
due to inefficient technologies and low production quality. With the needs growing and prices of

tool materials increasing, their recycling is becoming urgent, To retreat hard metal wastes, the parts

were preliminarily thermo-cyclically refined and mechanically treated by collision. For mechanical
refining, the disintegrators and disintergator milling were used.

This study focused on the grindability of hard metal particles with fraction less than 2.5 mm in

disintegrator DSL-160 and on the estimation of the granulometry and morphology of the ground
product. Based on the hard metal powder produced and traditional Ni-based self-fluxing alloy
powders, new composite powders for wear resistant coatings were elaborated. The research also

covered the abrasive erosion wear resistance of different coating compositions.

Key words: hard metals, recycling, disintegrators, milling by collision, composite coatings, wear

resistance.

1. INTRODUCTION

-~ Recent developments have concentrated on the sustained utilisation of

existing resources and recycling of materials. Among reusable materials,
metallic wastes (such as industrial scrap, old scrap, domestic wastes) are

significant. Hard metal wastes are part of industrial metal scrap. Hard

metals used in oil shale mining and the metal working industry produce
large quantities of wastes. The reasons are related to inefficient

technologies and low production quality. With theprices of hard metal

powders rising, their recycling has become an urgent issue. ;
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Different retreatment methods of tungsten-based hard metals are

available, e.g., chemical-metallurgical methods of recovery of tungsten
from tun;sten carbide, mechanical methods of retreatment of hard metal

parts [*%]. In the framework of the metallurgical methods, zinc processes
and gas phase oxidation/restoration were studied. Quality problems are a

concern in tungsten powder production and application.
Furthermore, hard metals can be retreated by the mechanical methods,

particularly milling them by the collision method. Disintegrator, a

technology of materials treatment by collision, facilitates production of

hard metal powders with a typical hard-metal structure (tungsten carbide-
based frame structure with cobalt binder), preserving their chemical

composition. This hard metal powder can be used as an excellent material

for wear resistant detonation sprayed coatings and as a hard component of

melted composite coatings. At the same time, specific hard metal powders
can be used as a component of composite grinding and polishing tools.

Tungsten carbide-based hard metals were chosen because of their wide

industrial use as well as for their high mechanical properties. Analogous
investigations were carried out with more brittle chromium and titanium

carbide-based materials.

2. EXPERIMENTAL METHODS

2.1. Hard metal as an initial material

Our study covered wastes of traditional tungsten carbide-based hard

metals with cobalt binder content from 6 to 15%. This paper focuses on

tungsten carbide hard metal with 15% cobalt content. Parts from tungsten
carbide-based hard metal (WC+ISCo), such as tool plates, black oil

sprayers, reinforcement elements of mining bores, were used.

2.2. Pretreatment of hard metal wastes

As the maximum particle size of treated materials in a laboratory
disintegrator is 3—5 mm, hard metal wastes were subjected to preliminary
treatment:

1) thermo-cyclical treatment (heating at 400°C in liquid lead, followed

by cooling in liquid nitrogen);
2) mechanical refining.
As a result of thermo-cyclical-mechanical treatment, the fineness of

initial material was less than 2.5 mm. Figure 1 shows the particles of

pretreated hard metal.

2.3. Grindability study

The pretreated hard metal parts were ground in a laboratory
disintegrator DSL-160 at the rotation velocity of rotors 10000/10000 rpm.
Table 1 illustrates specific energies of grinding in a multiple process.
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To achieve the determined granulometry, particles were ground by
multiple direct grinding.

Fig. 1. Initial hard metal parts. Magnification 65x: a — thermo-cyclically treated; b — mechanically
refined.
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2.4. Study of granulometry and morphology of hard metal powders

In our study, we used the modified Rosin—-Rammler distribution

function and the method []. The granulometry of the ground product was

described in the logarithmic size ofparticles Log,X /X.
The morphology of powders was studied by the Image Processing

System Videolab ver.2.l, based on the full morphological analysis of

binary image of all particles [*]. The following parameters of a particle
were determined:

1) perimeter P;,
2) area A; (as the area of picture elements inside a particle),
3) diameter d; (diameter of a circle with an area equal to the particle area),

4) form factor K (as ratio of a particle area A; to ап area of a circle with

an equal perimeter of the particle perimeter P;)
4 -

K„—=
n Ai

Р?
:

(1)

medium form factor
N

FF N P1= i

Next, the quantity of particles, their total and relative area, total

perimeter, and the corresponding average parameters (average area,

average perimeter, and average size) will be calculated and shown on the

size/form distribution diagrams.

3. GRINDABILITY STUDY OF HARD METAL BY

DISINTEGRATOR

Hard metal particles with particle size less than 2.5 mm (which
depended on disintegrator construction) were ground by a disintegrator
device DSL-160 by direct milling at the rotation velocities of rotors

10000/10000 rpm. The hard metal powder with the determined fraction
was obtained by sieving the ground product. |

Maximum velocity of
Specific energy of processing, kJ/kg, by multiplicity of treatment

4x

164 17.2 34.3 51.6 68.8

Table 1

Velocity of collision and specific energy of processing E, by the rotation velocity
10000/10000 rpm
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Figure 2 illustrates the results of the grindability study by direct multi-

stage (1, 2,3, and 4 times) grinding. As shown in Fig. 2b, the influence of

specific energy of grinding on the granulometry (particle size) is

noticeable by the initial material —2.5+1.25 mm. The multiple grinding of

Fig. 2. Dependence of granulometry of hard metal powder on specific energy of grinding E,: initial

material —1.25+0.315 mm (a) and -2.5+1.25 mm (b).
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hard metal —1.25+0.315 mm did not significantly increase the fineness of
the powder (Fig. 2a). In terms of application, proper granulometry is most

important. The dependence of the median size of the produced particles of
hard metal powders on the specific energy of grinding is demonstrated in

Fig. 3. As shown, more intensive refining takes place by the coarse initial

fraction (upper curve).

Figure 4 shows particle shape and microstructure of hard metal particles.
The particles are mainly isometric in form, and the microstructureof particles
has a typical hard metal structure, based on tungsten carbide (Fig. sb).

Figure 6 shows the size and form distribution of hard metal powder
particles ground at the velocity of rotors 10000/10000 rpm four times.

Table 2 illustrates the main characteristics of the produced powders. As

сап be seen, the main fraction of ground powder is 30-70 pum (about 70%)
with an average particle area of 2200-2800 pm 2 and form factor of

particles between 0.7-0.9.

Fig. 3. Dependence of median size dsq and ratio of median size dsg to initial median size d,,5 of

particles on specific energy of grinding E,,.
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Fig. 4. Particles shape and microstructure of ground hard metal powders. Magnification 65x with

granulometry: -1.25+0.315 тт (а), -0.63+0.315 тт (b), -0.315+0.16 mm (c), —-0.16 mm (d).

Fig. 5. Microstructure of melted NiCrSiß-25 (WC-15Co) coating (a) and hard metal particle (b).
Magnification 100 and Sooox, respectively.
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On the basis of the study of the fracture mechanism, we can conclude

that milling of hard metal particles takes place as a result of direct fracture

of particles caused by the intensive stress waves produced by high velocity
collisions [s].

Fig. 6. Size and form distribution of powder —1.25+0.315 mm ground 4x at the velocity of rotation

of rotors 10000/10000 rpm.

Granulometry Form factor

Type of material
Mainfraction, | Diameter | Area Am Main :

2 : Мефит
ит апа % ат ИП рт fraction

-0.315 mm, ground 1х 30-70 60 2800 0.85 0.72

70

-1.25+40.315 mm, ground 4x 20-70 53 2200 0.9 0.75

73

Table 2

Main characteristics of ground hard metal powders (groundat the velocity of rotors

10000 rpm)
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4. COMPOSITE COATINGS BASED ON HARD METAL

POWDERS

As our studies have shown, to guarantee high wear resistance, coatings
must have heterogeneous composite structure with maximum hard phase
content, particularly for operating at small attack angles []. As a result,
the hard metal powder produced was used as a hard phase of composite
coatings.

A technology of composite powder coatings, based on self-fluxing
NiCrSiß alloys and hard metal powder, was elaborated. The melted

coatings, based on NiBoCrlsSi3B2 alloy and WC-15Co (fraction —-0.315

mm) with hard metal particles content 15, 25, and 50%, were produced.
The coatings were laid by the gas-flame method. The microstructure of
melted NiCrSiß- (WC-15Co) coating with hard metal content 25% and

hard particles structure is demonstrated in Fig. 5.
The study also analysed the abrasive erosion wear resistance of melted

coatings. Table 3 shows the relative wear resistance of traditional melted
NiCrSiß coatings and the same reinforced hard metal particles and

analogous welded Castolin-Eutectic (Switzerland) coatings. As can be

seen, the wear resistance of the new composite coating exceeds traditional

NiCrSiß coatings about 1.5 times and is similar to the coatings from the

industrially produced welding electrodes.

5. CONCLUSIONS

1. Our studies demonstrate the possibility of recycling (retreatment and

reuse) of hard metal wastes by the mechanical disintegrator milling
method. ‚

* hardness of hard metal,
** microhardness of hard metal particles.

Wear resistance £
м

, Hardness on
у

а =90°

NiCrSiB 480 1.3 0.8

NiCrSiB-15(WC-Co) 480/1220* 1.5 0.7

NiCrSiB-25(WC-Co) 480/1220* 1.9 0.6

NiCrSiB-50(WC-Co) 480/1220* 2.0 0.6

8811 (Castolin) 560/1460** 2.1 0.7

Table 3

Relative abrasive erosion wear resistance of melted NiCrSiß- (WC-15Co) coatings
(abrasive quartz sand 0.1-0.3 mm, v = 80 m/s)
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2. The analysis of the influence of the specific energy of grinding on the

granulometry of the ground product showed that an intensive refining
takes place by multistage grinding during the first grindings. The

mechanism of particle fracture by the collision treatment was defined.

Refining of material is a result of direct fracture of particles.
3. The granulometry and the morphology of the hard metal powders

produced is unaltered — the isometric form of hard metal powder particles
is preserved. To describe the product ground by the granulometric
analysis, the modified Rosin—Rammler distribution function and the

method were preferred; the morphology of hard metal powders is

described by the form factor.

4. On the basis of the hard metal powders produced and Ni-based self-

fluxing alloys powders, the composite powders for wear resistant coatings
were elaborated. The comparative wear resistance tests showed high
relative abrasive erosion wear resistance of the coatings.

ACKNOWLEDGEMENT

The support by the Estonian Science Foundation Grant No. 1426 is

greatly appreciated.

NOMENCLATURE

o. — attack angle by abrasive erosion wear, deg

AA,, A;) — агеа, pum?
d(d,, d;, dso, d,so) — size of a particle (diameter), um

E, - specific energy of processing, kJ/kg

E, — relative volume wear resistance

F,, - distribution function (the modified Rosin-Rammler distribution

function is used)

KF(KFM ‚ KF,.) — form factor

P(P,, P;) — average perimeter

rpm — rounds per minute,min”!
v — velocity of abrasive particles, m/s

X — natural size of a particle

X, — upper limit of possible size of a particle
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KÕVASULAMITE KORDUVKASUTUS

Priit KULU, Aleksei TUMANOK, Daniil ARENSBURGER,
Toomas PIHL, Valdek MIKLI, Helmo KAERDI

Vajadus kdvasulami, eelkdige volframkarbiidse kdvasulami korduv-

kasutuseks оп tingitud mirkimisvddrse koguse kõvasulamjäätmete
olemasolust Eestis. Jddtmete teke on seotud kasutatavate tootmistehno-

loogiate suhteliselt madala taseme ja sellega kaasnevate kvaliteediprob-
leemidega. Pidades silmas kasvavaid vajadusi tooriistamaterjalide jdrele ja
nende hinnatSusu, on kdvasulami korduvkasutus viga aktuaalne.

Kdvasulami iimbertd6tlemisel on kasutatud eelnevat termotsiiklilist ja
mehaanilist peenendamist ning jdrgnevat 166kjahvatust desintegraatoris.
On uuritud eelnevalt peenendatud kdvasulami (osakeste suurus kuni 2,5
mm) jahvatatavust desintegraatorseadmes DSL-160 ning jahvatusprodukti
granulomeetriat ja morfoloogiat. Saadud kovasulampulbrite kasutus-
voimalusi on selgitatud iserdbustuva nikkelsulami ja volframkarbiidse

kovasulami abil pulberkomposiitpinnetes. Vordlevalt on teimitud pulber-
komposiitpinnete ja traditsiooniliste kulumiskindlate pulberpinnete vastu-

pidavust.
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