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Abstract. The influence of chemical composition of TiC- and Cr3C,-base cermets on the resistance

to oxidation during prolonged exposure to high-temperature (800 and 900°C) air was studied. It

was found that in the temperature range of 800-900°C, the oxidation of Cr3C,-base cermets

exceeds that of TiC-base ones 30-50 times. This process follows the logarithmic kinetics. The

parabolic rate law was observed during the oxidation of TiC-base cermets. Alloying of TiC-NiMo

cermets by NbC and VC contribute considerably to the increase in oxidation resistance (up to 5

times). Among TiC-steel cermets, alloys with low TiC content and high oxidation resistant

chromium-silicon steel binder had the highest oxidation resistance.

Key words: oxidation, titanium carbide, chromium carbide, cermets, hard metals, carbide phase,
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1. INTRODUCTION

Titanium carbide, in particular, chromium carbide-base cermets (hard

metals) are well known because of their high resistance to oxidation [l'4].
The latter has the highest oxidation resistance among hard metals. To

improve oxidation resistance of TiC- and Cr;C,-base cermets, alloying
(modifying) by different elements could be used. At the same time,
information about the influence of alloying elements on the oxidation

resistance is scanty. _
This paper focuses on the influence of chemical composition of

titanium and chromium carbide-base cermets on the resistance to

oxidation during prolonged exposure to high-temperature air.

2. MATERIALS AND EXPERIMENTAL DETAILS

Oxidation is known to be a uniform process [°]. Therefore we may
assume that thickness of an oxide film is proportional to the increase in the
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specimen weight. Therefore we used the traditional method of measuring
oxidation by determining weight gain AG (mg/cmz) of specimens.

The kinetics of oxidation was determined at 800 and 900°C. Using ground
test pieces 5x15%20 mm with mass ca 8 gr, measurements of weight gain
were taken periodically — after heating during 1,3, 6, 12, 24, 48, 72, and 96 h,
followed by open air cooling. Such experimental feature creates thermal
stresses of oxide protective scales after every specific interval of time, but at

the same time, it simulates a cyclic mode of operation, frequently occurring in

engineering service (e.g., turbine blades, oil sprayers).
Three different groups of cermets were investigated:

Cr3C,—Ni and Cr3Cy—NiCr;
TiC-NiMo;
TiC-steel.

The binder content in the Cr3C,-base cermets investigated was 10-30
mass % and in TiC-NiMo ones 20-60 mass %. Chromium content in

Cr3C,-NiCr binder-phase was 20 mass %. The ratio Ni:Mo in TiC-NiMo
cermets was 4:1, 2:1 and 1:1. Some grades of such cermets were

modified by different refractory compounds: VC, NbC, Cr3C,, Tiß,, TiN,
and SiC. The content of alloying compounds in TiC-NiMo cermets was 1,
3,5, 10, and 15 mass %.

The content of steel binder in steel-bonded hard metals (SBH) was 30—
60 mass %. According to oxidation resistant steel binder composition,
SBH can be classified into four groups (content of alloying elements in

binder in mass %):
TiC—FeSi2

TiC-FeCrSi2ll 1.5

TiC-FeCrNi22 16

TiC-FeCrNi22 26.

The first two groups of SBH have heat-treatable steel binder with
martensitic structure after hardening, and the two latter ones have an

austenitic non-heat-treatable binder. Some grades of such corrosion
resistant SBH were additionally alloyed (mass % in binder) by silicon (1.5
or 3), copper (1.5 or 3) and molybdenum (5 or 10).

All Cr4C,- and TiC-base cermets were sintered in a vacuum. The

porosity of cermets was 0.1-0.8 vol. % depending on the composition.

3. RESULTS AND DISCUSSION

Pilling and Bedworth classify oxidisable metals into two groups: those

that form protective oxide scales and those that do not [6]. If the Pilling—
Bedworth ratio (volume of 1 mol of oxide/volume of 1 mol of metal) is <l,
the oxide scales provide no efficient barrier to the penetration of gas to the

metal surface. If the ratio is >l, the protective scale will shield the metal,
and oxidation can proceed only by solid state diffusion. If the ratio is much

greater than 2 and the scale is growing at the metal/oxide interface, the

large compressive stresses developed in the oxide may cause the scale to

crack and spall off.
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Oxide scale content is a necessary but not a sufficient condition for

providing resistance to oxidation. For protective purposes, the scale

adhesion in the metal/oxide interface and stresses in scales that can

damage the scale are of great importance.
In engineering practice, changes in temperature have a great effect on

the stress state of metals and their oxides. Therefore, oxide protective
scales fail because of the stresses created by cooling from the oxidation

temperature. Thus, in the case of cyclical heating, oxidation of metals as

well as cermets is higher than that at constant temperature [7].

3.1. Cr3C;-base cermets

During heating in air at 700-1000°C, an oxide film consisting оЁ

oxides CrOy, Cr3og and CryO3 is formed [’]. A mixed oxide NiCr,O4 is

usually formed when CryC,-Ni cermets are oxidised [*]. Considerable

oxidation of such hard metals begins at 800°C and is accompanied by
burning out of carbon. In that process, chromium carbides with decreased

carvon content - CryCy and Cry3Cg — are formed under oxide films.

Our experiments show that oxidation resistance of Cr3C,~Ni cermets

depends on binder content (Fig. 1) — the rate of oxidation increases with the
increase of metallic binder content ofan alloy. At the first stage of oxidation,
МО иа forms, followed by the formation of a mixed oxide NiCr,Oj; layer.
Similar results have been described in [7]. Conseguently, in oxidation

resistance, chromium carbide is superior to the binder-phase. On the

specimens from chromium carbide, a thin green-colour chromium oxide

Cr,O3 film forms after 0.5 h heating. According to petrographical analysis
[7], a double-layer oxide film forms on the chromium carbide. The outer

green-colour layer has coarse-crystalline structure (grain size 10—20 um).
The inner dark layer is fine grained (grain size 2—7 um), in large numbers

also containing crystals ofchromium carbides Cr;C,, Cr7C; and Cr,3Csg.

Unexpectedly, the oxidation resistance of cermets with Ni—Cr binder is

inferior to that of cermets with Ni-binder (Fig. 1). It may be attributed to

the developing higher growth stresses during oxidation and thermal

Fig. 1. Weight gain in air at 800 and 900°C for Cr3C,-Ni cermets as a function of binder content.
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stresses during cooling from the reaction temperature. Both may result in

partial loss of oxidation protection. An increase in temperature up to

900°C raises the oxidation factor to nearly ten. At such a high
temperature, no relationship between oxidation resistance and binder

content of Cr3C,—Ni cermets exists. It can be explained by the equalisation
of oxidation rates of carbide and binder-phases.

3.2. TiC-NiMo cermets

Resistance to oxidation of TiC-base cermets is by 30-50 times less than

that of Cr3C,-base ones (Fig. 2). It can be attributed, in particular, to the

formation of oxide scales of less tightness during oxidation of TiC-base

cermets. As is known, already at 500°C, oxidation of titanium carbide

begins [B]: decrease in lattice parameter of TiC from 4.324 А 4.320А 15

an evidence of titanium oxicarbide formation. Oxidation at such a low

temperature is also accompanied by the formation of porous rutile TiO,
with a relatively low protection ability. +

Fig. 2. Weight gain in air at 800 and 900°C for TiC-NiMo cermets as a function of binder content

and ratio Ni:Mo.
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Results of the present study confirm that during oxidation of TiC-

NiMo cermets, the parabolic rate law is observed (Fig. 3). An increase in

the binder content is accompanied by an increase in the resistance to

oxidation. Consequently, oxidation resistance of TiC is at a disadvantage
in relation to NiMo binder. A small increase in oxidation resistance is

observed due to Mo content increase of cermets. The tight adherent mixed

oxide NiMoOy, film tends to resist a rapid oxidation up to 940°C [9].

Alloying TiC-NiMo cermets by different refractory compounds has a

marked effect on oxidation resistance (Fig. 4). Additions of NbC (up to 10
mass %) and VC (5 mass %) contribute considerably to the gain in

oxidation resistance. It is essential to emphasise that alloying additions of

NbC result in the increase in oxidation protection by 5-10 times in spite of

lower oxidation resistance of NbC as compared to TiC [l].
It is known [°] that for the oxides formed according to the Wagner

mechanism (scale growth, in which diffusion of ions or electrons is rate-

controlling) and containing wrong-valent impurity cations, soluble in the

oxide, the impurities alter the defect concentration of the scale. Consequently,
the oxide growth rate may be altered by the impurities of an alloy. An increase

or decrease in oxidation depends on the relative valences of the cations and on

the type of an oxide. During oxidation of TiC-NiMo cermets, evidently a film

of n-type semiconducting mixed oxide forms. The oxidation rate of such

oxides is controlled by anion diffusion through anion vacancies. In this case,

additional high valent cations of Nb reduce the anion vacancy concentration

of mixed oxide and the oxidation rate. In addition, alloying elements with

smaller ion size (size of Nb ions is less than that of Ti and Ni) contribute to

sinterability and therefore to tightness of the protective oxide layer o

Fig. 3. Weight gain in air at800°C for TiC-NiMo (Ni:Mo = 4:1) cermets as a function of time
0O - 50TiC-NiMo; ¢ - 60TiC-NiMo; O - 70TiC-NiMo; A - 80TiC-NiMo.
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3.3. Steel-bonded TiC-base cermets |

Oxidation resistance of TiC-FeSi cermets ап Фаг оЁ TiC-NiMo alloys
is nearly equal, not depending on the binder content (cf. Figs. 3 and 5).
The latter can be explained by the oxidation resistance of the binder phase
close to that of titanium carbide at 800°C.

Chromium-silicon steel binder has an advantage over titanium carbide
in oxidation resistance. Therefore, TiC—FeCrSi cermets have (at equal TiC

content) much higher oxidation resistance than that of TiC-FeSi hard

metal (Fig.s). According to petrographical analysis, the oxide film of

Fig. 4. Weight gain in air at 800 and 900°C for TiC-NiMo cermets as a function of alloying
compound content.
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TiC-FeCrSi cermets consists mainly of iron oxides Fe3;O4, Fe,O;.
Formation of titanium oxides TiO, Ti;O3, oxides of chromium Cr,O3 and

silicon SiO, as well as silicates of iron and chromium is much less.

According to [l9], formation of iron and chromium silicates is responsible
for higher oxidation resistance of TiC-FeCrSi alloys than TiC—FeCr ones.

Fig. 5. Weight gain in air at 800°C forTiC-FeSi and TiC—FeCrSi cermets as a function of time

A -40TiC-FeSi2;x - 50TiC-FeSi2; ¢ - 60TiC-FeSi2; O — 40TiC-FeCrSi2l 1.5.

Fig. 6. Weight gain in айг at 800°C for TIC-FeCrNiSi and TIC-FeCrNi cermets as a function of time.
O - 70TiC-FeCrNi22 16; ¢ — 70TiC-FeCrNiSi22 16 1.5; A — 70TiC-FeCrNiSi22 16 3;
X - 70TiC-FeCrNiSi22 26 1.5; O — 70TiC-FeCrNiSi22 26 3.
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An increase of TiC content in cermets with high oxidation resistant

FeCrSi binders exerts an unfavourable influence on the resistance to

oxidation (cf. Figs. 5-8). A relatively small increase in oxidation

resistance at 800°C is observed because of silicon and molybdenum
additions in corrosion-resistant TiC-FeCrNi cermets (Figs. 6 and 7).

Fig. 7. Weight gain inайг at 800°C for TiC—FeCrNi and TiC-FeCrNiMo cermets as a function of time.
+ - TOTiC-FeCrNi22 16; О - 70TiC-FeCrNiMo22 16 5; A - 70TiC-FeCrNiMo22 16 10;
x — 70TiC-FeCrNiMo22 26 5; ¢ - 70TiC-FeCrNiMo22 26 10.

Fig. 8. Weight gain in air at800°C for TiC-FeCrNi and TiC—FeCrNiCu cermets as a function of time.

O — 70TiC-FeCrNi22 16; ¢ — 70TiC-FeCrNiCu22 16 1.5; A — 70TiC-FeCrNiCu22 16 3;
x — 70TiC-FeCrNiCu22 26 1.5; + — 70TiC-FeCrNiCu22 26 3.
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Additions of nickel and copper have an insignificant influence on

oxidation resistance (Fig. 8).

4. CONCLUSIONS

1. Among the tungsten-free cermets, chromium carbide-base ones have

the highest oxidation resistance. The oxidation resistance of such cermets

is by 30-50 times higher than that of TiC-base ones. A decrease in binder

phase content contributes to an increase in oxidation resistance of Cr;C,-
base cermets. Due to their high oxidation and corrosion resistance, these

alloys are applied in manufacturing of wear resistant parts, subjected to

wear and statical loads at high temperatures up to 900°C.

2. An increase in е binder content of TiC-NiMo cermets 15

accompanied by an increase in the resistance to oxidation. A small

increase in oxidation resistance is observed due to an increase of

molybdenum content in such alloys.
3. Additions of NbC and VC contribute considerably to the increase in

oxidation resistance (up 10 5 times) of TiC-NiMo cermets. Because of

their high oxidation resistance, TiC-NbC-NiMo cermets are used for tool

and wear resistant part manufacturing, working at high temperatures up to

800°C.

4. The oxidation resistance of TiC-FeSi cermets and that of TiC-NiMo

ones are nearly equal. The resistance does not depend on binder content.

5. The oxidation resistance of high-chromium TiC-FeCrSi cermets is

(at equal TiC content) much higher than а{ оЁ TiC-FeSi alloys. An

increase of TiC content in such cermets with high oxidation resistant

binder exerts unfavourable influence on oxidation resistance.

6. Alloying by Si, Mo and Cu has an insignificant influence on the

oxidation resistance of corrosion resistant TiC—FeNiCr cermets.
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TITAAN- JA KROOMKARBIIDSETE KERMISTE

OKSÜDEERUMISKINDLUS

Jiiri PIRSO, Jakob KUBARSEPP

On uuritud titaan- ja kroomkarbiidi baasil valmistatud kdvasulamite

oksiideerumiskindluse soltuvust nende keemilisest koostisest pikaajalisel
kuumutamisel ohu kdes temperatuuril 800 ja 900°C. Temperatuuriinter-
vallis 800-900°C iiletab kroomkarbiidi baasil kovasulamite oksiideeru-

miskindlus 30-50 korda titaankarbiidsete kdvasulamite oma, kusjuures
Cr3C, baasil kdvasulamite oksiideerumine toimub 800°C juures logaritmi-
lise seaduse järgi.

Titaankarbiidsete kdvasulamite oksiideerumine toimub kdikidel uuri-

mistemperatuuridel paraboolse seaduse kohaselt. Legeerimine nioobium-

ja vanaadiumkarbiidiga véimaldab oluliselt (kuni 5 korda) 1651а Кбуа-

sulamite TiC-NiMo vastupanu oksiideerumisele.

Terassideainega titaankarbiidsetest kovasulamitest on suurim oksiidee-

rumiskindlus Cr-Si-terasest sideainega viikese titaankarbiidi sisaldusega
sulamitel.
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