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Abstract. This paper focuses on the disintegrator milling technology, used for mechanical

treatmentof metal chips (cast iron, alloy steels, and non-ferrous alloys). The study centered on the

types of disintegrators (laboratory and semi-industrial) and milling technologies (direct and

separative) for metal chips and wastes. A technology of mixing and homogenisation of powder
mixtures is described. Due to high velocities in disintegrators (up to 300 m/s) and high stresses

operating during grinding, an additional effect of mechanical activation of ground material was

observed, and attempts were made to exploit it in the technological processes. Applications of the

produced metal powders in powder metallurgy and surface technology were investigated. Such

applications as low-alloyed steel powders for powder metallurgy "parts, non-ferrous metal alloy
powders for solid zincification and brassing, and powders for new composite powder coatings are

discussed.

Key words: utilisation of metal chips, disintegrator milling technology, grindability, metal

powders, powder metallurgy, mechanical coating, protective coatings.

1. INTRODUCTION

In the contemporary mechanical engineering industry, the demand and
the prices of raw materials are increasing. Saving of the existing resources

and recycling of materials are topical issues.

The circulation of metals assumes formation of various kinds of metal

scrap (metallurgical, industrial, and old) and waste metal [!].
The metallurgical industry is practically absent in Estonia, the domestic

metallurgical scrap from casting and rolling is minimal. The amount of

industrial scrap (formed in the process of final product manufacturing) is

high because of low-quality production technologies. Utilisation of this

scrap, in particular, chips of alloyed steels and non-ferrous metals in

process metallurgy, is irrational because then we burn alloying elements.

Exporting is disadvantageous because of their small volume density and
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low prices. Thus, industrial scrap (e.g., chips of ferrous and non-ferrous

metals and alloys) is dominant in Estonia.

To utilise industrial metal scrap, mainly mechanical methods have been

used. First of all, by the collision method, metal chips were milled.

Disintegrator is one of the few devices which treats materials by
collision [> 3]. Based on our long-term experience and theoretical studies

of milling, DS-series of disintegrators were developed, operating in the
conditions of direct, separative, selective, and selective-separative milling.
Besides milling, as a result of high intensity collisions, the effect of the

mechanical activation of the ground material is important.
Based on the disintegrator milling technology, utilisation of the

following metal chips was studied:

a) cast iron;
b) low- and high-alloy steels;
c) non-ferrous alloys: aluminium—copper, zinc—-aluminium, and copper—-
zinc alloys.

2. EXPERIMENTAL METHODS

2.1. Initial materials

Metal and alloy chips, applied in the metal working industry in Estonia,
were used as the initial materials. First of all, the alloys which produce
crushable chips in the processes of machining (milling and turning) were

chosen. Otherwise, the pretreatment of long plastic chips is necessary.
Table 1 shows the composition and mechanical properties of the

materials studied. Before grinding, the chips were washed in petrol, dried

about fifty hours at room temperature and heated for two hours at 150°C.

1_`уре г_зп‹і Content of
Mechanical properties, min

designation of
1 %

Grey cast iron 3.5-3.7 С 80-220 0 130-240

(СЧ15) 2.0-2.4 51 :
0.5-0.8 Mn

base - Fe

Zn-Al-alloy ZnAl4 3.543 Al 333 10 91

(ЦАМ4-1) 0.75-1.25 Cu

base - Zn

Cu-Zn-alloy 59.0-61.0 Cu 340-470 25 100

CuZn40Pb 0.6-1.0Pb

(ЛС59-1) remain — Zn

Al-Cu-alloy 3.84.9 Cu 392 8 90

А1Си5 1.2-1.8 Mg
(a16) base — Al

Table 1

The initial materials
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2.2. Grindability of metal chips

Metal chips were ground in the disintegrator mill DSL-160 by direct

and separation milling at the rotation velocities from 2000 to 10 000 rpm.
The velocities between impact elements of the disintegrator and the

particles of grinding material ranged from 30 to 150 m/s. The milling step
was analysed by the granulometric method.

To achieve metal powders with the determined granulometry, chips
were ground at various rotation velocities (2000, 4000, 6000, 8000 and

10 000 rpm). In the direct grinding, to achieve the necessary fraction,
multi-stage grinding was used. To estimate grindability, the parameter of

grinding-specific energy of grinding, was used (Table 2) [2 3].

2.3. Granulometry and morphology of a ground product

To study the granulometry of a ground product by the granulometric
analysis, the modified Rosin—-Rammler distribution function and the

method were used [4].
The granulometry of a ground product was described by Rosin—

Rammler in the logarithmic size of particles

XO
x = log,%, (1)

where

x — natural size of particles, mm;

Х — upper limit of possible size of particles of the material studied;

kzš coefficient (ratio) of sieves system used in the experiments (k = 2,2,
2).

In our experiments, k=2 was used. The modified Rosin-Rammler

distribution function was applied in the form

Rotation Maximum Specific energy of treatment Eg,kJ/kg, by multiplicity of

velocity of velocity of treatment

2000/2000 32 0.8 1.6 2.4 3.2

4000/4000 64 3.1 6.2 9.3 12.4

6000/6000 96 7.0 14.0 21.0 28.0

8000/8000 128 12.4 24.8 37.2 49.6

10 000/10 000 160 19.4 38.8 58.2 77.6

10000/9000 151 17.3 24.6 519 69.2

10 000/8000 142 15.2 30.4 42.6 60.8

Table 2

Maximum velocity ofcollision and specific energy of treatmentE, of material with DSL-160

in dependence on velocity ofrotation of rotors and multiplicity of treatment
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-1
f,„ (x, Х‚ Т, п) = ’_l_т_2п ! exp(—'-l;,—zn ) (2)

in the differential form and in the integral one

Е, = 1-exp(-'i;—lz"), (3)

where Z is an auxiliary variable

Х-Х0

Z—-—"n—. 4)

Parameters of distribution are shown in Fig. 1

Unfortunately, the distribution function cannot be expressed through p,,
directly. Instead of p,,, in (2) and (3), the auxiliary parameter n is used.
Parameterp,, is expressed by :

n-1 (n—l) (5)pm=—m"'CXp—n °

The expression m x p,, is the function of n only and is represented in

Fig. 2. The dependence of p,, on n is nearly linear.

Fig. 1. The principal parameters of the used distribution function: хо + т — the logarithmic size of

the particle with maximum probability, p,, — value of maximum probability, Xy — upper limit of

largestparticle, m — mode of distribution.

Fig. 2. Dependence of parameterp,, on auxiliary parameter л
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In addition, for the metallographical analysis, stereological methods
were used to characterise the morphology of metal powders. The
distribution of particle sizes (medium diameter and area) was determined,
and formfactor of particles was calculated.

2.4. Technological properties of metal powders

The technological properties of metal powders (bulk density and

flowability) were determined by standardised methods. In the process of

grinding, the hardening of particles was determined by measuring the

lattice parameter by X-ray analyzer DRON-2.

To determine the specific surface area of a powder by the method of

thermal desorption of nitrogen, a modified equipment SORBTOMETER

EM-31 was used.

3. GRINDABILITY OF METAL CHIPS

3.1. Grindability of cast iron chips

Cast iron chips with initial particle size from 1 to 20 mm were ground
by direct milling. As shown in Fig. 3, the granulometry of the ground cast

iron (CYIS) depends on the specific energy of grinding. When low

specific energy treatment is used, the refining of the particles depends on

the direct fracture of initial chips because the number of impacts (cycles)

Fig. 3. Dependence ofgranulometry of cast iron (C415 powders on specific energy of grinding Ej,
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By multi-stage grinding after each grinding, a new finer fraction results.

This fine product is the result of the direct fracture of particles, and it can

be used in powder technology. Figure 4a illustrates the shape and
microstructure of cast iron powders ground at optimal parameters.

3.2. Grindability of zinc alloy chips

Grindability studies of zinc alloy chips with initial particle size from 1

to 8 mm were carried out by direct milling. As shown in Fig. sa, at

velocities up to 6000-8000 rpm, the influence of rotation velocity
(specific energy of grinding) on the granulometry (particle size) is

Fig. 4. Particles shape and microstructure
of ground powders: a — cast iron, b - zinc

alloy, ¢ — brass.
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considerable. The same was observed with multi-stage grinding, i.e., the

fineness of ground product increased noticeably, пр to 3—4 times; further

grinding did not increase the powder fineness so much (Fig. sb).

As shown in Fig. 6, the medium size of particles (X/X)) and the ratio of

specific surface areas of the ground product and initial chips (A/A()
comply with the specific energies of grinding at various grinding
parameters.

Table 3 demonstrates the bulk density of multi-stage ground zinc alloy
powders.

Fig. 5. Dependence of granulometry of ZnAl powder on specific energy of grinding Ej by
velocities of revolution of rotors: a — 8000/8000 rpm, b — 10 000/10 000 rpm.

Multiplicity of
. 3 5

grinding

Bulk density, g/cm* 0.73 1.78 2.31 2.60 2.71 3.07

Table 3

Bulk density ofmulti-stage ground powders



43

An optimal granulometry (160-320 um) of zinc alloy powders, used in

the coating technology, was obtained by grinding at the rotation velocities

6000-8000 rpm after 3—4 time grinding. The output of suitable fraction
was about 40-50%. Higher fineness or output of fine powders can be
achieved by separation grinding. Figure 4b illustrates the shape and

microstructure of zinc alloy powders ground at optimal parameters.
Table 4 demonstrates the technological properties of zinc alloy powders

used in the following solid zincification.

As a result of X-ray investigations of non-ground chips and ground
powders, the effect of cold hardening of the particles due to the impact
grinding was found, the difference in crystal lattice parameters was about

5-10% (Table 5). .

Fig. 6. Dependence ofratio of median size X to initial median size X, and ratio of specific area A to

its initial value A on specific energy of grinding.

Grain size, pm Bulk density, glcm3 Strewing density, g/cm3 Flowability, g/s

160 39 38 1.2

315 35 34 1.6

Table 4

The technological properties ofzinc alloy powders

Stage of the material | Lattice parameter, nm

Zinc alloy chip
- initial stage 0.2665

— annealed (200°C, 30 min) 0.2664

Ground powder (4x at 8000 rpm) 0.2495

Table 5

The parameters of crystal lattice of zinc alloy chips and powders
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3.3. Grindability of aluminium alloy chips

Refining of duralumin chips with initial particle size from 5 to 20 mm

by impact grinding has a slightly different character. As shown in Fig. 7,
the two parallel processes on milling of duralumin chips are:

1) direct fracture of particles — as the result of intensive stress waves,

originated by high velocity collisions;
2) low cyclic fatigue fracture, occurring on the surface of the particles — as

the result of numerous local plastic deformation caused by the collisions.

The fine fraction (0.16-0.315 mm), the product of low cyclic fatigue
fracture, is primarily suitable for powder metallurgy, but all the particles
are cold hardened, and the powder needs annealing before use.

3.4. Grindability of copper alloy chips

Copper-zinc alloy — brass chips with initial particle size of about 0.2—

1.5 mm were subjected to multiple direct grinding.
As shown in Fig. 8 and confirmed by a rule of milling of plastic

materials, considerable refining takes place after first grinding. During the

following grindings, the material is not furtherrefined. To achieve a finer

fraction, the multi-stage grinding with cycle numbers more than 10-20 is

necessary. As a result, the fatigue process will take place and the fine

fraction becomes available. Figure 4c¢ illustrates the shape of brass powder
ground at optimal parameters. _

Fig. 7. Dependence of granulometry of duralumin powder on specific energy of grinding E,,.
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3.5. Morphology of ground product

The results of the morphology study of the produced powders are

illustrated in Table 6. The microstructures of cast iron, zinc, and copper
alloy powders are shown in Fig. 4. The particles have mainly isometric
form except brass powder. The size and shape of initial chips was

practically unchanged after the fourth grinding.

Fig. 8. Dependence of granulometry of brass powder on specific energy of grinding E,,.

um and this % - fraction

Grey cast iron 60-180 110 9000 0.65 0.61

ZnAl4 70320 130 12000 0.75 0.67

CuZn40Pb 603;70 140 15000 0.65 0.63

AlCu5 3(:?00 80 5100 0.80 0.72

85

Table 6

The main characteristics of ground metal powders with determined granulometry
from 0.160 to 0.315 mm
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4. APPLICATION AREAS OF THE PRODUCED METAL

POWDERS

4.1. Metal powders as raw material for powder metallurgy

In particular, steel powders can be used in powder metallurgy. In the
traditional technology (compacting and sintering), to remove cold

hardening of materials and to improve the compactibility of metal

powders, the preliminary thermal treatment — annealing of powders, is

necessary. Cast iron powder can be used as a carbon containing component
in compositions for powder metallurgy parts.

4.2. Metal powders for surface treatment

Cast iron powders with fraction from 0.315 to 0.6 mm were used for
abrasive blastering of surfaces before coating. Blastering with cast iron

particles has numerous advantages over sandblastering:
— the process is cleaner and dustfree,
— additional cleaning before coating is unnecessary.

4.3. Non-ferrous metal powders for mechanical coating

Due to its chemical and physical properties, zinc is a widespread and

the cheapest non-ferrous metal for surface treatment. The galvanical and

gas-thermal (gas-flame and electric arc spraying) zincification are widely
used in protection against corrosion, but the method of solid zincification

(sherardisation) is equally prospective D].
Based on the study of zincification process, using zinc alloy powder,

optimal parameters of the process were elaborated [°]. The difference in

the thickness of zinc coatings, obtained by zincification in zinc alloy and

pure zinc powders (in the first case, the thickness of the coatings is 2-3
times smaller), caused by the Al, contained in the zinc alloy powder.
According to literature, Al in zincification mixture increases the corrosion

resistance of zinc coatings [7].
Solid zincification has advantages over other methods (the process is

simple, dry and environmentally friendly, the coatings have a complex
structure and properties, and are compatible the coatings). Therefore at

first this method is very attractive in small production and for covering of

powder metallurgy parts.
To increase the corrosion resistance of mechanical Zn-coatings, the

zincing-aluminising in the mixture of Zn- and Al-content components
(ratio 55:45%) was used, and the process of solid zincing-aluminising was

studied.

The technology of solid brassing in the mixture of brass powder and

glass balls for decorative copper-based coatings on aluminium alloys is

under investigation.
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5. CONCLUSIONS

1. Based on the grindability study of industrial metal scrap, metal chips,
the feasibility of disintegrator milling technology for metal chip utilisation

was shown.

2. The fracture of particles by collision and refining of ground product
can take place in one of the two ways:
— direct fracture as the result of intensive stress waves originated by high

velocity collisions (in the case of brittle materials, such as cast iron, this

mechanism is dominant);
—low cyclic fatigue fracture as the result of numerous local plastic

deformation due to the collisions (such mechanism of fracture is

dominant forplastic materials such as brass).
3. The shape of particles treated by collision is approaching to

isometric. As a result, the bulk density and flowability of metal powders
increases. |

4. Due to е high velocities in disintegrators and high stresses

operating during grinding, an additional effect of mechanical activation of

the ground material is observed, which influences in two different ways:
— worsening compactability of powders;
— activating diffusion processes in the following technological processes.

5. The produced powders (cast iron and steel powders for powder
metallurgy parts, zinc, aluminium and copper alloy powders for

mechanical coating) can be used as raw material in powder technology.
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TÖÖSTUSLIKE METALLIJÄÄTMETE MEHAANILINE

UTILISEERIMINE

Priit KULU, Aleksei TUMANOK, Valdek MIKLI

Toostuslike metallijddtmete utiliseerimise eesmirgil on uuritud nende

tootlemist mehaanilisel, s.o. desintegraatorjahvatuse teel. Metallilaastu

(malm, legeerteras, virvilissulamid) jahvatamiseks on kasutatud mitut

tiilipi desintegraatorseadmeid (laboratoorseid ja pooltddstuslikke sealhul-

gas desintegraatorit DSL-160) ja tehnoloogilisi variante (otse- ja separat-
sioonjahvatust).

Suurest kiirusest tulenevalt desintegraatoris (kuni 300 m/s) ja jahvata-
tava materjali kdrge deformatsioonipinge tottu on kdrvuti peenenemisega
tdheldatav jahvatusprodukti mehaanilise aktiviseerumise efekt, mida vdib

kasutada jidrgnevates tehnoloogilistes protsessides.
On selgitatud Ка saadud metallipulbrite kasutusvoimalusi pulbermetal-

lurgias ja pinnatehnoloogias. Positiivseid tulemusi on saadud madal-

legeerterase pulbrite kasutamisel pulbermetallurgias konstruktsioonidetai-

lide valmistamiseks, virvilissulamite (tsingi- ja vasesulamid) pulbrite
kasutamisel mehaaniliseks pindamiseks ja uute pulberkomposiitide loo-

miseks.
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