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Abstract. This paper estimates wear energy for different abrasive wear types. The tests conducted

proved that of the wear processes, two-body abrasion requires the least energy. On pure metals, the

minimum relative wear energy reaches about 10. Based on the value of the relative wear energy of a

pure metal or annealed steel at certain testconditions, we can evaluate the relative energy values for

any other metallic material. It is valid for two-body and three-body abrasion and erosion processes
provided that the hardness of an abrasive exceeds that of a metal.
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1. INTRODUCTION

As a result of systematic analysis of tribological processes, an

awareness has developed of these phenomena to be considered useful as

energy transformation processes. Determination of energetic dependences
which connect friction and wear parameters may be used as a basis for

materials selection as well as for developing methods of the calculation of

the wear of machine parts. Specific work or energy W obtained as a ratio

of the energy E to the volume of the removed material V is proposed as a

criterion of wear resistance

W=E/IV. (1)

The energy W is estimated to be between 10 and 100 J/mm?3 for the

mechanical abrasive wear [ 2]. A detailed study of energetic dependences
in various abrasive wear processes has led to some interesting information

about energy consumption, as will be discussed later.

2. TWO-BODY ABRASIVE WEAR

The specific energy in two-body abrasion is expressed as []

W= FslV, ‚ (2)

https://doi.org/10.3176/eng.1996.1.04

https://doi.org/10.3176/eng.1996.1.04


27

where F is friction force and s is sliding distance. Experimental results
have shown that the dependences of W and the relative wear resistance X
on the initial hardness of tested materials are similar, i.e. they correlate [3].
Nevertheless, specific energy has an advantage over the relative wear

resistance usually employed, facilitating the evaluation of different wear

processes. In these tests, the W ranging from 2.3 to 66 J/mm? increased
with the increase in material hardness. Friction coefficients in sliding
metals against abrasive paper are within a narrow range of f=0.45-0.6.
As a result, the reciprocal compensation of strength and deformation
factors influences the wear process provided the Vickers hardness HV of

the materials is between 170 and 870 [4]. On this basis, the W values can

be obtained for commercially pure metals and steel 45 through the wear

data in []. Figure la shows the results of calculations, where the points
represent the results discussed in [’]. The specific energy W is proportional
to the hardness of pure metal and carbon steel in the annealed state (lines
1-3, Fig. 1a). For quenched and tempered steel, the W grows linearly with

the increase of hardness (line 4, Fig. 1a). Consequently, at the same value

of friction coefficients, the dependences И/-НУ аге quite analogous to the

Fig. 1. Specific energy W (a) and relative wear energy B (b) of metals and minerals as a function of

Vickers hardness: 1-3 — pure metals: 1 -f = 0.6,2-f=0.5,3 -f=0.45; 4 - steel 45, f=o.s;
5 — minerals, f=o.s; 6 — metals; 7 — steel 45 incold hardened state, f=o.s.
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dependences of relative wear resistance-hardness. If the hardness is

smaller than 150 HV, the specific energy is greater than the proportional
dependence of W-HV (curve 6, Fig. 1a). It is caused by an increase in

friction coefficients with a decreace in hardness within the ran§e which

increases the wear energy E in Eq. (1). Friction coefficients in [’] show a

tendency to decrease with the increase of hardness and are somewhat

higher than in 4. Apparently, this is caused by different test conditions

and properties of the abrasive papers. Line 5 in Fig. la of the specific
energy for minerals has a slope which is lessby a factor of 11.4 than line 2

for pure metals at the same friction coefficient. It is because chemical

bonds of metals and minerals differ [s]. Line 7 in Fig. la shows

independence of W on HV of cold hardened steel 45.

A non-dimensional specific energy or relative wear energy B is defined
as a ratio of specific energy to material hardness. It is a well-established

fact that, for very sharp cutting tools, the specific energy is nearly equal to

the hardness of a workpiece [°]. Volume hardness Но тау be used as a

measure of material resistance to static penetration of indenter. It is equal
to the average specific energy e necessary for material displacement from

the indentation [7' 8]

eo=Hy=H,=l.o7B HY, (3)

where H), 15 average contact pressure on the area of indentation projection.
Assuming that the relative wear energy B is

B = Wley = W/1.078 HY, (4)

we obtain a parameter that is nearly equal to that defined in [6], but is well-

grounded physically as the relation of wear energy to indenter penetration
energy shows. The relative energy proves to be independent of the hardness

of pure metal and annealed steel and ranges from 13.5 to 18.5 if hardness

exceeds 150HV (lines 1-3, Fig. 1b). Below 150 HV of relative energy, B

grows with the decrease in hardness (curve 6). For heat treated steel, B

lessens with the increase in hardness (curve 4). It indicates that the specific
indentation energy e, grows faster than the specific wear energy W. It means

that the share of energy necessary to form wear debris lessens with the

increase in steel hardness. Relative wear energy of minerals is lower by a

factor of 11.4 than that of pure metals at the same value of the friction

coefficient, and its value approaches one (line 5). Curve 7 which shows the

reduction of relative energy with the increase in hardness of strain hardened

steel is obtained by Eq. (4). This curve is a hyperbola because the specific
energy W does not change (line 7, Fig. 1a). The specific energy Wof the heat

treated steel (line 4, Fig. 1a) may be expressed by

W= W, +a(HV— HV,), (5)

where W, is the specific wear energy of steel in annealed state, a is a

coefficient, HV is Vickers hardness number, and HV, is Vickers hardness

number of steel in the annealed state. Based on Eq. (4), the equation of

hyperbola for relative energy of heat treated steel was obtained. _
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B = [W, + a(HV— HV,)]/1.078 HV= W,/1.078 HV +

+ [a(HV-HV,)]/1.078 HV. (6)

The first term in Eq. (6) expresses the relative energy of a strain-

hardened metal. Consequently, B of heat treated steel is always higher than
that of the same steel in the strain-hardened state.

Testing over a large range of loads, lengths of travel, sliding speeds and
abrasive particle sizes of two-body abrasion shows that for pure metals,
relative wear energy has a minimum value of 10 and can increase by an

order of magnitude (Table). However, below hardness 30 HV energy B

may be higher (Fig. 1), but this range has little practical importance. Filing
needs lower energy B than abrasive paper (Table). In practice, B lies
between the lines B = 10 and B = 100 for pure metals and annealed steels

(lines 1 and 2, Fig. 2), and its location depends on testing conditions. In

theory, metals may have the minimum value of B = 1 when all the material

displaced is removed in the form of microchips [6]. Nevertheless, due 10

size effect occurring when the abrasive particle size falls below 100 pm,
the values of B may exceed 100 [“]. As the relative wear resistance and

specific wear energy have the minimum and constant values for cold-

worked material, the possible relative wear energy values of metals can be

obtained knowing only the result of a single experiment made with pure
metal or annealed steel. Assuming that annealed steel of 200 HV is the

case, and the test result is B = 60 (line 3, Fig. 2), then the minimum values

of B are obtained by Eq. (4) for a cold-worked material. The result is

hyperbola 4 in Fig. 2. All heat treated and alloy steels of 200 HV in the

annealed state have B values that lie between line 3 and curve 4 (hatched

area,Fig. 2) at the same test conditions satisfying the expression

WJ/1.078 HV<B < W,/1.078 HV,. (7)

Fig. 2. Relative wear energy B of two-body abrasion as a function of Vickers hardness: 1-3 — pure
metals and annealed steels, 4 — strain hardened steel.
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For example, at 600 HV, the relative wear energy of steels may change
by three times and 20<8<60. With the increase in material hardness, the

range of possible B values increases. Thus, the hatched area in Fig. 2
facilitates the estimation of the range of wear resistance of metals on the

result of a single test which ought to be carried out under service

conditions or if it is impossible, by test rig under similar conditions.

3. ABRASIVE EROSION

With a stream of abrasive particles, the specific wear energy can be

calculated by ['?]

Specific energy W, J/mm? Relative energy B

Material

|о| e|omn| e

Abrasive paper [9]

Al 3 25 10 83

Cu 9 40 11 95

AISI 1020 21 112 10 56

Mo 29 166 10 55

W 42 333 10 79

Abrasive paper ['°]

Bi 4.7 5.6 48 57

Zn 25 34 77 103

Gray cast iron 20 28 11 15

Brass 18 25 18 25

Smooth file in unworking direction [ю]

Bi 2.4 3 24 30

Zn 11 14 35 43

Gray cast iron 8 11 4 6

Brass 6 8 6 8

Smooth file in working direction [ю]

В! 1.5 1.8 15 18

Zn 44 5.2 13 16

Gray cast iron 7 9 4 5

Brass 4 5 4 5

Abrasive paper [°]

Pure metals 2.3 36 24 53

Steels 35 66 8 17

Two-body abrasive wear parameters of metals
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W =mv?*2V, (8)

where m is mass of abrasive particles and v is velocity of abrasive

particles. The dependence of specific energy on Vickers hardness of

commercially pure metals obtained on the basis of experimental data
(3151 is shown in Fig. 3. In general, the specific energy increases with

increasing hardness and is lower at small impact angles, reaching its
maximum at normal impact. In the case of an impact velocity of 82 m/s
and at 20° impact angle, W is comparable with specific energy in two-

body abrasion (line 3, Fig. 3 and line 1, Fig. la), if the abrasive is ап

angular glass grit. In the stream of quartz sand, the specific energy is

markedly higher than in the stream of glass grit because sand particles are

round, and therefore the share of plastic deformation in wear mechanism

rises. Strain hardening and repeated thermomechanical treatment have

little or no influence on the wear resistance of metal in impact erosion

['6:l7]. Therefore at small impact angles, it is possible to plot the similar

range of possible relative energy values of metals like for two-body
abrasion by testing one pure metal or annealed steel only (Fig.2
Practically there are almost the same limits of B = 10 (line 5, Fig. 3) and

B = 100 (line 6, Fig. 3). Nevertheless, the upper value of B may prove to

be higher than B = 100.

At high impact angles, the polydeformation fracture prevails in a wear

mechanism, and the behaviour of quenched steels is somewhat different

from that at low angles: an increase in hardness may lead to a slight
change of specific energy or a reduction of up to three times. Some test

points have significant deviations from lines 2 and 4 which show the

Fig. 3. The variation in specific wear energy W for pure metals as a function of their hardness HV:

1 - v =250 m/s, impact angle 30°; 2 — v =250 m/s, impact angle 90° (3); 3 - v = 82 m/s, impact

angle 20°; 4 — v= 82 m/s, impact angle 90° ['4); 5 -B=10; 6— В = 100; 7 - » = 136 m/s, SiC,
impact angle 20° ['3]. 1, 2 - quartz sand; 3, 4 - glass grit.
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proportional relationship between W and HV (Fig. 3). Nevertheless, the

data in ['®] show that relative wear resistance of pure metals grows nearly
linearly with the increase in hardness. Tests were carried out with (guartz
sand and v = 37 m/s. Taking into consideration the results in ['4~l 18], we

can plot the range of possible relative energy values of metals at high
impact angles. Tests should be carried out with metals of intermediate

hardness (Cu, Ni, and Fe) or annealed steel. It determines the upper limit

of B (line 3, Fig. 2). The lower limit of B (line 4, Fig. 2) is determined by
Eq. (4) asa first approximation. For quenched steel, lower limit of B may
be smaller than line 4 shows, and in the case of linear relationship between

W and HV according to Eq. (5), it may be obtained by Eq. (6) where the

coefficient a becomes a negative quantity which can be determined by the
test only. Thus, quenching for the working conditions at high impact
angles is not recommended.

Comparable values of specific energy W in two-body abrasion and

abrasive erosion were described in [1 ] for chromium steels. In [l9]
somewhat different expression for calculation of specific wear energy is

used [2o] |
bmv2

W= =V 9

where b is the ratio of energy loss (ratio of energy absorbed by a specimen
to the energy of abrasive particles before hitting the specimen). The Egs.
(8) and (9) differ by the ratio of energy loss b. The coefficient b depends
on the hardness of material and impact anšle and can be obtained by
special testing according to the eguation in -

2 .

У,
Ь = I——2, (10)

у

where v is the velocity of abrasive particles after hitting the specimen
(rebounding velocity). Therefore in this paper the Eqgs. (2) and (8) are used

to calculate specific wear energy since they facilitate the evaluation of

different wear processes from a unitary viewpoint (initial energy of

abrasive particles).

4. THREE-BODY ABRASIVE WEAR

Three-body abrasion involves loose particles which may turn around

as they contact the wearing surface. Misra and Finnie have observed that

the effects of most variables on two-body abrasion, three-body abrasion

and erosion are almost the same for these three different wear processes
[?!]. The appearance of the eroded surface for low values of impact angle
has some similarity to that for two-body abrasion where cutting or

scratching is the apparent mechanism of removal. By contrast, high angle
erosion and three-body abrasion appear to involve repeated indentations
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and extensive surface roughening by plastic deformation. This process
produces extruded material which is vulnerable to removal by subsequent
particles. Wear rate for three-body abrasion is less by more than an order
of magnitude as compared to two-body abrasion due to smaller loading of
contact and a possibility of rotating abrasive particles. In some cases, the

data from one wear process can be used to predict the behaviour of metal

parts in another wear process. The linear relationship between the wear

resistance and hardness of heat treated steels has been observed by
Valdma [22] for three-body abrasion. Hence, it may be concluded that for
these three wear processes, the possible relative wear energy values for
metals can be evaluated by testing pure metal or annealed steel only
(Fig.2

5. SPECIFIC WEAR ENERGY LIMITS

In sliding abrasive paper or file across a workpiece surface, specific
wear energy changes from 1.5 to 333 J/mm?® (Table). The values of the

specific energy for material removal during both the initial and the steady
state regimes are in the range of 40-6000 J/mm? [23]. At impact abrasive
wear, the data in [°] show that energy W = 60-2100 J/mm> and the data
in [24] prove that W=2Bo-4700 J/mm?>. These examples show that

specific wear energy varies to a greater extent than assessed in [ 2]. On
the basis of the data analysed, the specific energy may be in the range of
W = 1-6000 J/mm>°.

6. CONCLUSIONS

The following conclusions can be drawn. Specific wear energy W

(energy per unit volume of material removed) correlates with the relative
wear resistance and can characterise various wear processes. The relative

wear energy B (ratio of specific energy to static indentation energy ед) оЁ

pure metals and annealed steels depends little on hardness at some

abrasive wear processes (two-body abrasion, three-body abrasion, and

erosion at Jow impact angle). The level of relative energy depends on wear

process and test conditions being the least for two-body abrasion (in that

process usually B = 10-100). For two-body and three-body abrasion and

erosion of metallic materials, possible values of relative wear energy can

be obtained only from a single test of pure metal (Cu, Ni, Fe are desirable)
or annealed steel carried out in given test conditions. The specific wear

energy may vary in the range W = 1-6000 J/mm?3. It is valid for abrasive

wear processes provided that hardness of an abrasive exceeds that of a

metal.
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ABRASIIVSE KULUMISE ENERGIA

Paul KALLAS

On vaadeldud kulumisenergiat abrasiivse kulumise puhul. Katsed
néditavad, et kulumine abrasiivpaberi toimel on kdige vihem energiat
ndudev protsess, kusjuures suhtelise kulumise energia minimaalvéirtus оп

puhaste metallide puhul ligikaudu 10. Etteantud kulumistingimustel
osutub voimalikuks iihe puhta metalli v3i 160mutatud terase katsetamisega
kindlaks miidrata metalsete materjalide suhtelise kulumise energia
voimalike viirtuste vahemik. See kehtib abrasiivpaberi, abrasiivvahekihi

ja abrasiiverosiooni mdjul toimuva kulumise kohta juhul, kui abrasiivi

kovadus iiletab materjali kdvaduse.
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