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Abstract. The solid solutions of CdSe—~CdTe, obtained by sintering of CdSe and CdTe powders,
were investigated by the method of high temperature conductivity. The data on the temperatures of
the structural phase transition between a hexagonal and a cubic modification in solid solutions of
varicus compositions were obtained experimentally. It was found that the doubly charged anion
vacancies are the dominant native defects both in crystals with a hexagonal and a cubic lattice.
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1. INTRODUCTION

A%BS compounds are an important class of optoelectronic materials.
Among them, ternary systems, which change physical parameters as a
functlon of composition, occupy a special place. The solid solutions, based
on AZB® compounds, are potential materials for producing
electrochelmcal solar cells, radiation detectors, and electro-optic
devnces[] One of the most interesting materials among the solid
solutions of A?BS compounds is CdSe,Te;_,. At a certain concentratlon of
components, the symmetry of CdSe Te]_J1r crystal lattice changes[ 1. A
crystal can be either in a cubic or in a hexagonal modification. This
indicates that the structural phase transition should be at a certain
composition and temperature. Studies of CdSe,Te,_, by the X-ray
dlffractlon method at room temperature indicate that such phase transition
exists [2]. In this study, an attempt is made to measure the temperature of
the phase transition as a function of composition at high temperature by
the conductivity method.
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2. EXPERIMENTAL

CdSe,Te,_, solid solutions with x=0.30; 0.40; 0.45 and 0.50 were
prepared by sintering of CdSe and CdTe powders at 900°C for 48 h. The
X-ray diffraction studies of powders indicate that the solid solutions with
cubic crystal structure formed. For conductivity measurements, samples of
solid solutions were made by pressing powders into tablets.

Using a two-zone quartz ampoule (Fig. 1), the high temperature
equilibrium conductivity ¢ was measured as a function of sample
temperature 7' and cadmium vapour pressure pcq. The vapour pressure of
cadmium was maintained by controllmg the temperature of a reserv01r
which contained pure cadmium and by using vapour pressure data [3]. The
ampoule had four sealed tungsten electrodes, and the four-probe method
was used. In all cases, the ampoule was placed into a quartz furnace tube,
which was evacuated to 1072 Pa to prevent oxidation of the electrodes.

Fig. 1. Two-zone quartz ampoule: / — sample, 2 — electrode, 3 - reservoir.

3. RESULTS AND DISCUSSION

Figures 2 and 3 show the dependence of o7 on recxprocal
temperature at two constant values of poy for CdSeq 4Teg . The
dependence of mobility is taken into account by the factor T 32 5o that
0T s proportional to the electron concentration and

oT 2= exp(—A—E), (1)

kT

where AE is the activation energy of conductivity.

At an increased temperature of the sample, the dependence was linear
with AE =0.42 eV. In the temperature range of 897 to 901°C, a step-like
change of conductivity was observed. Above this temperature, the
conductivity increased with an activation energy AE =0.61 eV (Fig. 3).
As the temperature decreased, in the range of 877 to 881 °C, conductivity
jumped. Subsequently, a linear dependence reoccurred with AE = 0.42 eV.

For all the other objects studied, except for CdSe( sTeq s, jumps of
equilibrium conductivity at the temperatures increasing and decreasing
were observed. Before and after a sharp jump, almost linear dependences
occurred.
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Fig. 2. Temperature dependence of o 72 for solid solution CdSeq 4Teg 6 (pcg = 3 % 10° Pa).
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Fig. 3. Temperature dependence of & T2 for solid solution CdSeq 4Tegs (Pcq = 10° Pa).

Figure 4 shows the relation between the vapour pressure of cadmium
Pcq and the conductivity for CdSe( 4Teg ¢ with a cubic and a hexagonal

lattice. The dependences may be expressed by 6 ~ pz: g» Where vy =1/3.
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The sharp jumps of conductivity, found in solid solutions CdSe,Te;_,
with x =0.3; 0.4 and 0.45, can be explained only if the structural phase
transition between a cubic and a hexagonal modification occurs. From [ ]
we can assume that at lower temperatures, the cubic modification and at
higher temperatures, the hexagonal modification is stable. In all
dependences, the loop of hysteresis was observed, which was between the
borders of phase transitions. This may be assumed to be a zone of biphase
samples. The zone is limited by the temperatures of phase transitions, and
it decreases with the reduction of x.
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Fig. 4. Cd vapour pressure dependence of conductivity for CdSeg 4Te ¢ at 888°C.

Figure 5 illustrates the improved phase diagram of the system CdSe-
CdTe, where at 870°C the biphase area takes 4.8 mole %, at 900°C -
3.4 mole % and at 950°C - 2 mole %. We may assume that below the
biphase area only cubic crystal lattice and under biphase area only
hexagonal lattice occur. The authors of [ ] assume that the width of the
biphase area is approximately 3 mole % of the whole temperature range.

For one sample, the area of phase transition was investigated at two
different cadmium vapour pressures (Figs. 2 and 3). These figures
demonstrate that the temperature of phase transition does not depend on
the vapour pressure of cadmium.

The dependence of sample conductivity on pcq4 gave for all the samples
studied y = 1/3. In this case, the formation of the dominant native defects
may be described by the equation

Cd(g) = Cdgy+Vj +2¢ )
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with mass action relation

”

. 2
KCd = [VB] Xn /pCd’ 3

where Vé’ is a doubly charged anion vacancy.
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Fig. 5. Phase diagram of the CdSe—CdTe system.

The approximated electroneutrality condition
n=2[Vg] 4)

leads to

» 1B p o 1B n ( AHCd)
n = (ZKCd) XPcq = (ZKCd) XPca®*P\ 35T /- &)

From Egs. (1) and (5) it follows that the enthalpy of formation of
doubly charged anion vacancies AH; = 3AE. So for a solid solution

with a hexagonal lattice AHcy=3 % 0.61 = 1.83 eV. This value of AHcy
is very close to the value 1.86 eV, observed in CdSe with a hexagonal
lattice [4]. For a solid solution with the cubic lattice, AHc4 found
experimentally is 1.26 eV.
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CONCLUSIONS

The results show that, as a function of solid solution composition, phase
transition temperatures can be determined very precisely by the high
temperature conductivity measurements of the solid solution CdSe,Te,_,.
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KORGTEMPERATUURNE JUHTIVUS JA FAASIULEMINEKUD
TAHKETES LAHUSTES CdSe, Te;_,

Tiit NIRK, Olga TOLSTOPJATOVA

Korgtemperatuurse elektrijuhtivuse meetodil on uuritud CdSe-CdTe
tahkeid lahuseid, mis valmistati CdSe ja CdTe pulbri segu kuumutamise
teel. On leitud, et tahkes lahuses esineb faasiiileminek heksagonaalselt
kuubilisele kristallvorele. Selle kdigus muutub hiippeliselt tahke lahuse
elektrijuhtivus. Katseliselt on médratud faasiiileminekute temperatuuride
soltuvus tahke lahuse koostisest. Arvestades elektrijuhtivuse soltuvust Cd
aururbhust on selgitatud, et nii heksagonaalse kui ka kuubilise
kristallvorega tahke lahuse korral on domineerivateks omadefektideks
kahekordselt laetud aniooni vakantsid.
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