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CURRENT DEVELOPMENTS IN MATERIALS

SCIENCE IN ESTONIA

Priit KULU

Tallinna Tehnikaiilikooli materjalitehnika instituut (Department of Materials Science, Tallinn
Technical University), Ehitajate tee 5, EE-0026 Tallinn, Eesti (Estonia)

Like in many other fields in Estonia and in the former Soviet Union, the

results of materials science were largely subject to secrecy. Doctors' and

candidates' dissertations, research reports, and authors' certificates were

classified as "for institutional use" only. As a result, information concern-

ing activities in the field of materials science and technology was scanty or

inadequate.
Over the recent three or four years, the picture has changed. An

overview of the relevant research institutions and the programmes pursued
in the field of materials science has become available. The academic and

research institutions and their areas of research can be summarised as

follows:

1. Tallinn Technical University (TTU)
— Department of Materials Technology (powder materials and powder

metallurgy, semiconductor materials, coatings and surface technology,
grinding and materials separation, and materials testing);

— Department of Chemical Engineering (conductive polymer coatings);
— Department of Polymeric Materials (polycondensation adhesives and

recycling of polymeric materials);
— Centre for Materials Research (structural research of materials and

development of structural research methods);
— Department of Building Production (cement and building materials);
— Department of Machine Science (methods of materials wear and

instrument design);
— Department of Instrument Engineering (tribological systems and laser

technology of materials).

2. University of Tartu (TU)
— Department of Physical Chemistry (electro-chemical technologies

and new materials, superbases and superacids, high-telhnperature super-
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conductive materials, conductive polymers, polymeric and bioactive

membranes, and thin films);
— Department of Experimental Physics and Technology (structural

research of materials and films and development of X-ray analysis
methods for materials research);

— Department of Organic Chemistry (Zn—Cu reagent-catalysts, bio-

active aminoacids and peptides).

3. Institutes of the Estonian Academy of Sciences (EAS)
— Institute of Physics (emission and light sensitive materials, ordered

and non-ordered solids, materials technologies and materials research

methods);
— Institute of Chemical and Biological Physics (high-temperature

superconductive materials, superbases and superacids, polymeric
materials research, and catalysts);

— Institute of Energy Research (plasma-technology of materials and

heat transfer surfaces);
— Institute of Chemistry and other institutes.

According to the nomenclature established by the Estonian Science

Foundation (ESF), materials science is classified as an engineering
science. This classification covers primarily materials science and

technology dealing with engineering materials (industrial materials). A

substantial part of materials science grants, in particular those for exact

sciences, i.e., solid state and chemical physics; physical, analytical and

organic chemistry, are allocated from the section of natural sciences.

During the recent four years, the grants for materials science, provided
by the ESF from the section of engineering sciences, approximate 10%

(Table). This proportion is similar to the share of materials science projects
(11%) in the EUREKA programmes. The share of ESF grants for materials

science is 2 % of the total science grants.

According to the Law on Science Management and the reform of

science and higher education, TU and TTU will become major centres of

materials research through their competence centres to be established.

The following strategic materials research directions in Estonia can be

outlined:

—in the field of materials chemistry: new materials based on solid

superstrong superacids and superbases;
— in the field of materials physics: new sensors and memory materials;
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— in the field of materials technology: engineering materials (develop-
ment, testing, and recycling).

To achieve these goals, in the framework of Estonia's strategic
materials science competence centre, strong materials science centres have
to be established in Tartu and Tallinn.

To establish a materials science and technology centre at TTU, the

following activities have to be accomplished:
— integration of the institutes of the EAS and departments of TTU in the

field of materials science;
— development of priority programmes and technology transfer of

materials science and technology;
— development of internationally acknowledged master and doctoral

programmes.
The priority programmes of the materials science and technology centre

at TTU will be as follows:
1. sensors and memory materials

— materials for solar energetics with the determined properties;
— conductive polymeric sensor materials;

2. development, testing, and recycling of engineering materials
— high wear-resistant composite materials and coatings based on

refractory compounds;
— corrosion and corrosion protection of metals;
— polycondensation adhesives;
— materials recycling;
— development of methods for structural research of materials;
— development of methods for materials testing and instrument

design;
— synthesis, structure, properties, and use of apatites.

In the near future, the goals of the competence centres of materials

science in Estonia will be:
— to integrate intellectual potentials and material resources in the field

of materials science and technology;
—to develop materials science projects in Estonia and achieve

European standards through national and international research

programmes;
— to seek international acknowledgement of the common TTU and TU

master's and doctoral programmes;
— to develop an Estonian materials science and technology programme

for 1996-2005 and activities to promote cooperation with industry;
— on these bases, to establish a faculty of materials technology at TTU.
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