
Proc. Estonian Acad. Sci. Engin., 1995, 1,1, 51-67

51

FAULT DIAGNOSIS IN VLSI DEVICES

Raimund ÜBAR

Tallinna Tehnikaiilikooli Arvutitehnika Instituut (Department of Computer Engineering, Tallinn
Technical University), Ehitajate tee 5, EE-0026 Tallinn, Eesti (Estonia)

Presented by L. Motus

Received 23 March 1995,accepted 1 June 1995

Abstract. This paper focuces on a new approach of hierarchical fault diagnosis for VLSI devices
based on alternative graphs (AG), which allows a uniform description of VLSI designs at different

representation levels and the use of the same general fault model for all levels. A uniform fault

tracing technique based on AGs for all representation levels is developed. The technique is
consistent with the multiple fault case, and the fault class considered is general rather than restricted
to the traditional logical level stuck-at fault class. The main contribution of the paper is to minimize

the number of signal observations needed for an exact localization of the fault site.

Key words: VLSI devices, hierarchical models, alternative graphs, stuck-at faults, fault diagnosis,
fault simulation.

1. INTRODUCTION

The concept of fault diagnosis is a central issue both in prototype
validation and in reliable computation. Once an error is observed, the

faulty component responsible for that error must be located. As circuit

density increases, the cost and time of fault diagnosis in VLSI devices will

grow rapidly. Therefore, the development of efficient fault diagnosis
methodology is of utmost importance.

Earlier work in the area of VLSI diagnosis was related to both artificial

intelligence (Al) and non-Al-based approaches. The Al-based approaches
are divided into two categories: the rule-based approach ['] and reasoning
from the first principles [?]. Both methods are time-consuming. Some

modifications to im%rove the efficiency of reasoning based fault diagnosis
were suggested in [7]. In [] very high speed integrated circuit hardware

description language (VHDL) descriptions are used for fault diagnosis.
The diagnosing procedure is basically similar to gate-level diagnosis, only
the level of hardware description is higher and the fault model differs

correspondingly. In [s] new functional fault models based on VHDL

descriptions were introduced. The disadvantages of VHDL approaches are

in the diversity of fault models and in the difficulty to use other fault

https://doi.org/10.3176/eng.1995.1.04

https://doi.org/10.3176/eng.1995.1.04

52

analysis methods than direct fault simulation. Al-based methods use

traditionally the single-fault assumption, which is another disadvantage of

the approach. An exception is the method presented in 9.
The most traditional non-Al-based diagnosis conception is using fault

dictionaries [’]. Fault dictionary generation is the result of a fault

simulation process. It is well-known that a complete fault simulation is

practically impossible, hence the fault dictionary based fault diagnosis
cannot be adequate. Some techniques and methods, generally used to

avoid a complete fault simulation, are listed in [B]. In [9] a fault diagnosis
system is described, based on е images of sets under the functions

designed specifically to deduce logic values in circuits under multiple fault

conditions. The approach used in this paper falls into the general category
of effect—cause analysis ['°]. In another approach, post-test fast foult

simulation is used to diagnose faults in structured designs [ll]. These

approaches are implemented only for the class of combinational circuits.

This paper focuses on the diagnosis methodology which operates on the
observed erroneous behaviour and on the structure of the system. The
behaviour consists of the error(s) observed on the system output lines and

specific values on the circuit input lines. By examining the error and the

structure of the system, possible error sources can be determined. In a

system, there is a definite flow of signals from the inputs to the outputs.
These signals flow through the system components that modify the signal
values according ю а functional specification. When one of the

components is faulty, the value that a particular signal takes on can

become erroneous. The fault diagnosis is to determine the relationships
between the components, and if faulty, the way they can affect the signal
values. This effect—cause relationship will be created by backtracking
faulty signals and represented by diagnostic trees where each node except
leaves represents a signal error (an effect) and the successors of this node

represent the possible causes of this error (Fig. 1). Based on this tree, the

guided signal probing can be carried out. Alternatively, if internal probing
is impossible, the fault diagnosis based on the intersection of different

diagnostic trees (for the case of a single fault assumption) can be carried
out. This paper discusses the problems of generation and minimization of

diagnostic trees.

Fig. 1. Generation of the effect-cause relationship.

53

The paper contributes to the following areas. First, it introduces a new

fault diagnosis approach based on alternative graphs (AG) ['2], which

allows a uniform description of VLSI designs at different representation
levels and the use of the same general fault model for all levels. Using this

approach, a three-stage hierarchical fault localization method was

developed: 1) functional fault level diagnosis, 2) structural fault class level

diagnosis, and 3) structural fault level diagnosis. This approach allows us

to keep the complexity of candidate fault sets on each level as low as

possible.
Another important contribution is the introduction of a uniform fault

tracing technique based on AGs for all design representation levels. By
this technique, a diagnostic tree (an effect—cause relationship between
candidate faults [4]) is generated. The tree is equivalent to the traceback

сопе [!!] where inconsistent faults are already eliminated. As different
from [*], no fault simulation for extracting most of these faults is needed,
and differently from ['l, the traceback procedure will be carried out at a

level higher than gate representation. The fault backtracking procedure is

consistent with the multiple fault case. The fault class considered is

general, not only restricted to the traditional stuck-at fault class.

The main contribution of the paper is to minimize the fault simulation

amount compared to the known methods, and to minimize the number of

signal observations (signal probing) needed for an exact localization of the
fault site.

2. ALTERNATIVE GRAPHS AND FAULT PRESENTATION AT

THE LOGICAL LEVEL

AG will be used here as a mathematical basis for fault backtracking in

digital systems uniformly at different system representation levels. AGs

were first proposed for test generation in digital circuits Ь‘З]. Unlike the

analogical binary decision diagrams (BDD) described in [1], AGs support
gate-level structural fault representation. Moreover, AGs are not restricted

for use at the logical level only [ls’ 16].
AGs are a means for representing digital functions. First, consider a

special case of the Boolean functions. An AG that represents a Boolean

function is a directed noncyclic graph with a single root node, where all

nonterminal nodes are labelled by (inverted or non-inverted) Boolean

variables (arguments of the function) and have always exactly two

successor-nodes whereas all terminal nodes are labelled by constants O or

1. For all nonterminal nodes, an one-to-one correspondence exists between

the values of the label variable of the node and the successors of the node.

This correspondence is determined by the Boolean function inherent to the

graph.
Let us denote the variable which labels the node m by x(m). We say that

the value of the node variable activates the node output branch. According
to the value of x(m), one of two output branches of m will be activated. A

path in an AG is called activated if all the branches that form this path are

54

activated. The AG is called activated to the value O (or 1) if there exists an

activated path which includes both the root node and the terminal node

labelled by the constant O (or 1). AG Gy with nodes labelled by variables

Xl, X2, ..., X, represents the Boolean function y =f (X) =f(xl, xp, ..., Xp) 1f

for each pattern of X, the AG will be activated to the value which is equal
to y. We can consider a digital system as a network of components, each of

which is described by one or more Boolean functions. Consequently, a

digital system can be represented by a system of AGs. For the gate-level
AG-description, the number of AGs is equal to the number of gates in the

circuit. As an example, Fig. 2 shows a representation of a combinational

circuit by AG. For simplicity, values of variables on branches are omitted

(by convention, the right-hand branch corresponds to 1 and the lower-hand

branch to 0). Also, terminal nodes with constants O and 1 are omitted

(leaving the AG to the right corresponds to y = 1, and down —to y = 0).

Similar to the superposition of functions, the superposition of AGs can

be defined [l3]: if the label x(m) of a node m in an AG G is a Boolean

function which is represented by another AG Gy, then the node т п С

can be substituted by Gy(~). Generation of an Aéw-model for a given gate-
level digital circuit is based on the superposition of AGs. AGs for logical
gates are assumed to be given as a source library. Starting from the gate-
level AG-description and using iteratively the superposition procedure, we

produce a more concise higher level representation of the circuit (by each
substitution of a node with an AG, we reduce the model by one node and

by one AG). As a result of the superposition procedure, we create

structural AGs (SAG) which have the following property ['3]: each node
in a SAG represents a related signal path in the corresponding gate-level
circuit. To avoid repetitive occurrence of the same subgraph in the AG-
model, it is recommended to create separate AGs for tree-like subcircuits.

Fig. 2. Alternative graph representation of a combinational circuit.

55

In this case, the number of all nodes in the set of SAGs will be equal to

the number of paths in all tree-like sub-networks of the circuit. Hence,
using the concept of SAGs, it is possible to ascend from the gate-level
descriptions of digital devices to higher level structural descriptions
without loosing the accuracy of representing gate-level stuck-at faults. The

task of simulating structural stuck-at faults in a given path of a circuit can

be substituted by the task of simulating faults at a node in the

corresponding SAG. Figure 2 illustrates an example of a set of SAGs for a

given circuit. The node 4; (bold circle) in the AG represents the upper
(bold) path (4y,a,b, 10) from the input branch 4 up to the node 10 in the

circuit. The set of faults (44/I,a/I,b/1,10/1) related to the path is

represented in the SAG by only one representative fault 4;/1. One and

only one node in the set of SAGs corresponds to each of the 17 signal
paths in the tree-like subcircuits of the circuit (the upper fan-out branch is

always denoted by the index 1 and the lower one by the index 2). The node

variables are inverted if the number of invertors in the corresponding path
of the circuit is odd.

Another way to generate logical level AGs is based on implementation-
free descriptions of digital devices (Boolean expressions, truth tables,
etc.). In this case, AGs do not differ from BDDs and we can use the

methods developed for synthesis of BDDs [l4]. Since AGs (or BDDs),
obtained on the basis of functions only, do not represent the structure of

the device, it is appropriate to name this class of AGs as functional AGs

(FAG).

3. FAULT DIAGNOSIS AT THE LOGICAL LEVEL

3.1. Fault backtracking on alternative graphs

Each path in an AG describes the behaviour of the circuit in a specific
mode of operation. The faults having effect on the behaviour are related to

the nodes along a given path. A fault causes an incorrect leaving the path
activated by a test. Hence, if we activate a path in an AG by a test pattern
which fails, then all faults related to the nodes of the path can be regarded
as fault candidates for the diagnosis procedure.

If an erroneous signal is detected in an output y of the circuit, then by
fault backtracking procedure, the set of candidate faults which can explain
the misbehaviour of y, will be created. This set will be represented in the
form of a diagnostic tree (DT) with the root labelled by the failed output y.
In this procedure, first, the path activated by a failed test pattern will be
determined in the graph G,. All the nodes of this path will be put into DT

as successors of the root node. For each successor with a label x that

corresponds to an internal node of the circuit and is represented by graph
G,, again an activated path will be determined whose nodes will form the
set of successors of x in the DT. This procedure will be repeated
recursively until all the leaves in the DT are labelled by input variables.
The number of nodes in the DT found in this way is generally less than the

56

number of nodes contained in the traceback cone [“] (or transitive fan-in

[4]) in the corresponding circuit.

With each node in the DT labelled by a variable x, we associate a

representative fault x/~D (x stuck-at =D) where ~De {o,l} is the

opposite value to what x has in the test pattern. This fault represents all

faults that can explain the signal failure along the path in the circuit

represented by the node x in the AG.

As ап example, Fig. 3 shows the diagnostic tree created by fault

backtracking for the given test pattern and for the failure at the output 11

of the circuit given in Fig. 2. Each fault in the DT represents a whole set of

faults in the circuit. For example, for the stuck-at 1 fault case, the fault 4,/
1 defined in the AG, represents faults 4,/1, a/l, b/1, 10/1 in the circuit.

3.2. Fault candidate tree reduction

In a general case, a DT is redundant in a sense that not all candidates in

the DT built by fault backtracking have to be consistent to explain the

misbehaviour of the circuit. There are three possibilities to exclude

inconsistent candidates from a DT: using a special "direction rule" ['7]
defined for SAGs, using local fault simulation and using global fault

simulation. But only one of them - the use of "direction rule" does not

contradict the multiple fault case. Fault simulation can be used only for a

simplified case of single fault assumption.
The "direction rule" was introduced on the basis of special properties of

SAGs [!7] апа сап be formulated by the following theorem.

Theorem 1. In an activated path ofan AG G,, which terminates in

а пойе т/, only these nodes m are consistent to expf;in the faulty value of
yfor which z(m) = z(mT) holds.

The proof of the theorem is given in [l7].

In the graphical interpretation of the theorem, only these nodes for

which the direction of leaving the node along the activated path coincides

with the direction of leaving the graph (terminal node) are consistent. As

an example, letus look at the paths activated in AGs in Fig. 2 by the test

pattern depicted in Fig. 3. From the "direction rule", it follows that the

node 9, in G (consequently, with all its successors) and the node 9¢ in

Fig. 3. Fault backtracking in alternative graphs.

57

G are to be excluded from the DT. The resultant DT is stressed by bold
rint.Р

Local fault simulation, acting only in the area of a given graph Gy
determines if the faults of nodes in the graph are able to change the value
of y or not. It is eguivalent to restricted fault simulation only in the scope
of tree-like subcircuits. Local simulation can be used for nodes which
remain in the DT after the action of the "direction rule". As an example, by
local fault simulating it is possible to exclude additionally nodes 3, and 4,
from the DT in Fig. 3, because the faults at these nodes cannot effect the
value of 10. The resultant DT is shown by circles. It should be noticed that
for the multiple case, this DT will not be valid any more. For example, this

test pattern is able to detect the multiple fault (3,/1, 4,/1), however, after

the fault simulation both of these faults are missing in the DT.
Global fault simulation acts in the scope of the whole circuit and has

the goal to analyse the fault propagation through reconvergent fan-out

regions. For the DT, it means that only these variables contained in the DT
which represent stems of reconvergent fan-out regions are to be fault
simulated globally.

3.3. Complexity considerations

Consider the DT generation separately for the multiple fault and single
fault assumption cases. For the multiple fault case, the method of fault

backtracking combined with the use of "direction rule" without fault

simulation is valid. The idea of the method is closely related to the fault

list generation procedure described in [Ч, except that in 'Y gate level

faults and the gate-level structure are used whereas in this paper, only fault
class representatives and a higher macro-level are considered. The parity
and signal value consistency calculations along each gate-level path are

substituted in the present paper by the consistency proof only for the

representative fault of the path. Hence, the complexity of the present
method is lower than that of [1 l]. For example, the 66 stuck-at faults of the

circuit in Fig. 2 are represented in the AG-model by 34 representatives
only. Comparison with [*] is not possible because the fault candidate

generation from the transitive fan-in occurs in [] only by simulation.
For a single fault assumption, the fault simulation for a reduced

candidates setis accepted. In [*] all faults of the transitive fan-in area are

tobe fault simulated whereas in the present paper, only faults which have
remained in the DT after using the "direction rule" are tobe simulated.
This explains the complexity reduction achieved by the present method

compared to [4]. For example, for the circuit in Fig. 3, the transitive fan-in

consists of 33 stuck-at faults which all need simulation according to .
Using the presented AG-approach, for the test pattern in Fig. 3, only five

representative faults are tobe simulated.

58

3.4. Fault localization at the logical level

The diagnostic tree generated by fault backtracking is the guide for

fault diagnosis. Since the tree consists of fault class representatives, the

diagnosis will be processed in two steps: 1) fault class localization and

2) fault site localization.

First, let us consider the multiple fault assumption. For multiple fault

diagnosis, only guided probing technique is discussed here. If a multiple
fault will cause the misbehaviour of the circuit, then at least one of the

component faults has to belong to the DT created by the procedure
described in section 3. Consequently, this fault has to be detected since the

probing procedure follows the DT. If a fault is detected, the multiple fault

analysis has to be carried out. First, the simulation of the detected fault
will be produced. If the fault is classified as detectable, then the fault

diagnosis for the given test pattern will terminate. Otherwise, if the fault is
classified as not detectable, then the multiple fault analysis will continue.

Next, the detected fault will be inserted into the model and a new fault
conditioned DT for the given test pattern will be created. This DT will

guide the fault diagnosis for the next component of the multiple fault. If

the representative fault(s) is (are) detected, the fault site localization

among the related fault class(es) will begin.
As an example, suppose that the fault 3,/1 will be detected guided by

the DT in Fig. 3. A new activated path in G conditioned by this fault will

traverse only one additional node 8. As there are no other alternatives, no

probing is needed any more and the fault 8/1 will be diagnosed as the

second component of the multiple fault. For the second diagnosis step,
these two faults «create the following fault candidates:

3,/I={3,/I,a/I,b/1,10/1} and 8/1= {B/I,b/1,10/1} .
The

in?formation about the common parts of these fault sets can be used in

diagnosing the fault site.

In the single fault assumption, the fault diagnosing procedure
analogous to [' can be used only if all representative faults-in DTs are

decoded into plain fault lists. As a result, diagnosis at the fault class level

may give a multiple fault case. After intersection of the corresponding
fault sets, a single fault site diagnosis can be made.

4. ALTERNATIVE GRAPHS AND FAULT REPRESENTATION AT
THE FUNCTIONAL LEVEL

Consider a complex digital device in a general case as a dynamic
system S = (Z,F), where Z is a set of digital variables z (the number of
values of z is arbitrary but finite) and F is a set of arbitrary digital
functions on Z. The system 5 сап be represented by an AG-model where
nodes are labelled by functions fe F, variables z € Z or digital constants

and an one-to-one correspondence exists between the values of the node
label and the successors of the node.

59

Depending on the class of digital systems (or level of their

representation), we can classify different classes of AGs. For example, for

register transfer level (RTL), representations of digital systems consisting
of control and data paths, internal nodes in AGs are labelled by control
variables of Z (or control functions of F) whereas terminal nodes are

labelled by data functions of F (or constants). Here, the following
interpretation can be established: terminal nodes represent the data part
and internal nodes describe the control part of the system. For logical level

representations, all nodes are labelled by logical functions (variables or

constants). To create concise descriptions for structured random logic,
mixed-level representations are possible. For example, in finite state

machines, alongside with Boolean variables, integer state-variables and

integer constants for representing states can be introduced. In such a way,
AGs serve as a universal means to describe digital systems at different

representation levels. Hierarchical multilevel descriptions are easy to

produce since implementation details of functions given as labels at the

nodes of higher-level AGs can be represented by additional lower-level

AGs. Methods of generating such AGs are described in [l2].
An example of a digital system consisting of a data part and a control

part is depicted in Fig. 4. Figure 5 shows a set of AGs representing the

system. The data part is represented by AGs for the output data variable

OUT, bus variables M; and M,, register variables Ry, ..., R,,, functional

blocks Fy,F,, F3, and flag variables xj, x,. Only the graphs for flag
variables are binary, other graph variables are integers. Their values are

determined by expressions in the terminal nodes of the corresponding
AGs. Nonterminal nodes of the AGs of the data part are labelled by clock

variables C;, C and control variables yy, ..., y 7 which represent different

subfields of the control field Y in the microinstruction word. The control

part is represented by AGs for the microinstruction variable MIR, ROM

address variable A, and the control variable Z for multiplexing address

sources. The system is synchronized by the two clocks C; and C,. The

graphs with clock variables represent the behaviour of the corresponding
sequential circuit in the recursive form where the apostrophe denotes a

delay (the value of the variable with apostrophe is related to the time frame

before clocking). A hierarchical representation is easy to organize. The

following possibilities for descending from higher levels to lower ones can

be highlighted: both the integer graph-variables and the integer-variables
in nonterminal nodes can be vectorized and substituted by concatenation

of field-variables (for example, bit-variables), and the terminal nodes can

be substituted by lower level graphs which represent implementation
details of the corresponding functions more precisely [l2].

Different fault models defined at different representation levels of

digital systems are replaced on AGs by a uniform node fault model: 1) the

output branch of a node is always activated (stuck-at value), 2) the branch

is broken (stuck-open), and 3) instead of the given branch another branch

or a set of branches is activated. The stuck-at value fault model used for

gate-level circuits corresponds to faults of nodes labelled by the Boolean

variables. The functional fault model introduced in [lß] for the control part

60

of microprocessors is covered by faults of nodes labelled by instruction

word variables. The fault model defined for AGs covers also the fault

classes introduced in [s] for VHDL descriptions.
Each path in an AG describes the behaviour of the system in a specific

mode of operation. The faults having effect on the behaviour are related to

the nodes along the given path. A fault causes an incorrect leaving the path

Fig. 4. A digital system represented at the register transfer level.

Fig. 5. Alternative graph representation of the digital system.

61

activated by a test. The physical meaning of the faults associated with

node outputs depends on the physical meaning of the node. Depending on

the adequacy of representing the structure of the system, the fault model

proposed can cover a wide class of structural and functional faults
introduced for digital circuits and systems. The fault model defined on

AGs can be regarded as a generalization of the classical gate-level stuck-at

fault model - the latter is defined for Boolean variables, the former for the

nodes of AGs.

5. FAULT DIAGNOSIS AT THE FUNCTIONAL LEVEL

The fault backtracking procedure and the creation of the DT will be

carried out at the higher level AGs as described in section 3 for the logical
level AGs. However, in the DT nodes, instead of representative faults,

simply variables with their expected (simulated) values will be marked. As

an example, Fig. 6 demonstrates the DT for a given test sequence and the

failure at the data output at the time moment ?. From this tree, the fault

localization procedure in Fig. 7 results.

Fig. 6. Diagnostic tree for the given test sequence.

62

As different from the logical level, where the fault resolution

possibilities based on differentiating only two signal values are very
restricted, at the functional level, more powerful fault diagnosis analysis
based only on simulation (and not on signal probing) is possible.
Compared to the fault search at the logical level where, in a general case,

all the nodes in the DT are pretenders for signal probing, at the functional

level, many nodes in the DT can be excluded, based on the current signal
observation results. The following theorem can be formulated.

Theorem 2. Consider an AG G, where y has an erroneous value y*,
the path L in G, is activated by the fYailed test pattern and the variables

z(m), where m € L, are the successors ofyin the DT. The variable z(m),
m € L, cannot cause an error in y if there is no path in Gy from muptoa
terminal node m' where z(m') = y* holds.

Fig. 7. Functional level fault diagnosis procedure.

63

Consider an AG G, where a path L is activated. Using Theorem 2 it is

easy now to determine the possible causes of the erroneous value of y.

Only these successors z(m) of y in DT can cause an error (and be a

pretender for further signal probing), for which a path in Gyfrommuptoa
terminal node m' with z(m') = y* exists. For example, let us look at the DT

in Fig. 6. Suppose the variable OUT was observed and an erroneos value
OUT* was detected. If in Goyr a terminal node with R; = QUT*, i #0

exists, then it results that y; has a faulty signal y; =i (instead of y; = 0)
and no additional observation of y; by probing is not necessary. Otherwise,
if no such a terminal node with R; = QUT*, i#o exists, the variable y;
should be correct and the register R has to be the cause of the error.

In such a way, with a functional level fault diagnosis procedure
organized on the basis of DT, many decisions about the state of signals
(faulty or not faulty) can be made not by probing signals but only through
the corresponding AG analysis.

6. HIERARCHICAL FAULT DIAGNOSIS

Based on the AG representation of a digital system, a hierarchical fault

analysis can be easily carried out. The main feature of the approach is the

uniformity of the analysis methods at different representation levels

because of the same mathematical basis.

The hierarchical fault analysis is made in the following way. At the first

stage, a faulty block is localized at a higher functional level. This result
can be achieved by a fault localization procedure organized on the basis of
a higher level DT. The block is qualified as faulty if it has a faulty output
signal y and all input signals, the successors of y in the DT, are correct.

Now, the lower level AG-representation of the block is made taken, the

corresponding lower level DT is created, and the lower level fault

diagnosis procedure is carried out. In this procedure, if possible, the results

from the higher level diagnosis (for example, the information of

correctness of certain input signals) can be exploited.
As an example, consider the fault localization procedure, carried out

along the tree in Fig. 7. Suppose that the Branch logic Z is qualified as

faulty. In the corresponding higher level AG Gfor the faulty block, a path
(B=2,x, =O, 1) is activated. But no errors in B and x; (the successors of

Z in the DT) are detected. The gate-level circuit of the Branch logic with

the corresponding higher and lower level AGs and the failed test pattern
related to this block are depicted in Fig. 8. From the translation of the

higher level failure Z= 12537Z=3 ю the lower level

(Zy.Zy)= (0.1) > (Z,.Z,) = (1.1), it follows that the Branch logic for

the first bit of the worä 22is faulty. The path activated by the failed test

pattern at the lower level AG Gz is illustrated in Fig. 7 by bold print. It

consists of nodes В 1, В, Вээ, 7831, Xl, X, which all will be put in the

DT as successors of the faulty variable Z; (Fig. 9). From these nodes, x|
and x, can be excluded as a result of the higher level fault analysis

64

(Theorem 2): from the node x; in Gz no path exists to the terminal node 3

(3 is the faulty value of Z), but x, is missing at the higher level activated

path and, therefore, can not cause the erroneous signal Z. Further, using the

"direction rule" (Theorem 1), the nodes —B;;, By, =B3; can also be

excluded from the DT. As a result, the DT will contain only node By
which can now be automatically (without probing) qualified as faulty.
Finally, the multiple fault analysis follows, as explained in section 3.4.

From this analysis, the fault of the node =B, results. Both faults B;/1 and

=B,I/1 are shown in the corresponding Branch logic circuit in Fig. 9.

It is worth mentioning that by fault simulation (for the case of single
fault assumption), the fault B;;/1 should be excluded from the DT as well,
thus leaving the DT empty. Hence, using the simulation-based approaches
for determining fault candidates, like [4] and [“], a more precise fault

diagnosis in the Branch logic would have been impossible.

Fig. 8. Hierarchical design and test representation.

Fig. 9. Lower level diagnostic tree and fault diagnosis procedure

65

7. CONCLUSIONS

The paper presents a new conceptual approach based on alternative

graphs for fault diagnosis in digital systems. For the first time, a

hierarchical approach is developed based on the uniform mathematical

apparatus for each level of hierarchy. This approach facilitates a uniform

fault analysis at all levels and easy transportation of diagnosis results

obtained at a higher design level to a lower one to continue the candidate

fault set reduction. Also, it allows us to keep the complexity of candidate

fault set at each level as low as possible. The fault model defined in the

alternative graphs is the same for each design representation level, except
the interpretation the model has in relation to different levels. It was also

shown that in some cases the multi-level diagnosis can offer more

adequate results than the diagnosis carried out only at the logic level.

Compared to the known methods, the approach presented allows us to

reduce the amount of fault simulation for the candidate fault set reduction,
and to reduce the number of signal observations for fault site exact

localization.

ACKNOWLEDGEMENTS

The support by the Estonian Science Foundation grant No 574 and by
the fellowship from C.I.LE.S., France, is greatly appreciated.

REFERENCES

1. Grillmeyer, O. and Wilkinson, A. J. The design and construction of a rule base and an inference

engine for test system diagnosis. — In: lEEE Int. Test Conf., 1985, 857-867.

2. Davis, R. Diagnostic reasoning based on structure and behaviour. — Artif. Intell., 1984, 24, 347-

410.

3. Thearling, K. H. and Iyer, R. K. Diagnostic reasoning in digital systems. — In: 18th Int. Symp.
Fault Tolerant Computing, Tokyo, June 1988, 286-291.

4. Pitchumani, V., Mayor, P., and Radia, N. Fault diagnosis using functional fault model for VHDL

descriptions. — In: lEEE Int. Test Conf., Nashville, Oct. 1991, 327-337.

5. Ward, P. C. and Armstrong, J. R. Behavioral fault simulation in VHDL. - In: 27th ACM/lEEE

Design Automation Conf., 1990, 587-593.

6. Kleer, J. and Williams, B. C. Reasoning about multiple faults. — In: Nat. Conf. Artif. Intell.,

Philadelphia, 1986.

7. Ramamoorthy, C. V. A structural theory of machine diagnosis. — In: Proc. Spring Joint Comp.
Conf., 1967,743-756.

8. Marzouki, M., Laurent, J., and Courtois, B. Coupling electron-beam probing with knowledge-
based fault localization. — In: lEEE Int. Test Conf., Nashville, Oct. 1991, 238-246.

9. Rajski, J. GEMINI - a logic system for fault diagnosis based on set functions. — In: 18th Int.

Symp. Fault Tolerant Computing, Tokyo, June 1988, 292-297.

10. Abramovici, M. and Breuer, M. A. Multiple fault diagnosis in combinational circuits based on

an effect-cause analysis. — lEEE Trans. Comput., 1980, C-29, 451-460.

11. Waicukauski, J. А., Gupta, V.P,, and Patel, S. T. Diagnosis of BIST failures by PPSFP

simulation. — In: 18th lEEE Int. Test Conf., Washington, Sept. 1987, 480-484.

66

12. Убар Р. P. Альтернативные графы и техническое диагностирование дискретных

объектов. - Электронная техника, 1988, 8, 5 (132), 33-57.

13. Убар Р. Р. Генерирование тестов для цифровых схем при помощи модели альтер-

нативных графов. - Тр. Таллин. политехн. ин-та, 1976, 409, 75-81.

14. Akers, S. В. Втпагу decision diagrams. — lEEE Trans. Comp., 1978, 27, 509-516.

15. Übar, R. Vektorielle alternative Graphen und Fehlerdiagnose fiir digitale Systeme. —

Nachrichtentechnik/Elektronik, 1981, 31, 1, 25-28.

16. Übar, R. Test pattern generation for digital systems on the vector AG-model. — In: 13th Int.

Symp. Fault Tolerant Computing, Milano, Italy, 1983,347-351.

17. Убар Р. Р., Эвартсон Т. А. Оптимизация процессов поиска неисправностей в типоВвых

элементах замены цифровых систем. — [п: Автоматизация конструкторского

проектирования в радиоэлектронике и вычислительной технике, 1. Вильнюс, 1981,
175-184.

18. Thatte, S. M. and Abraham, I. A. Test generation for microprocessors. — lEEE Trans. Comput.,
1980, 29, 429-441.

SUURTE INTEGRAALSKEEMIDE RIKETE DIAGNOSTIKA

Raimund ÜBAR

On tutvustatud uut, alternatiivsetel graafidel pohinevat, hierarhilist
suurte integraalskeemide rikete diagnoosimeetodit. Alternatiivsed graafid
voimaldavad integraalskeemi eri esitustasanditel ühtselt kirjeldada,
kasutada sama matemaatilist aparaati, samu analiilisivahendeid ja üldist
rikete mudelit. Seesugune lidhenemine lubab rikete analiiiisi teha skeemi

eri abstraktsiooniastmetel iiht moodi. Uhtlasi saab kdrgemal tasandil leitud

diagnoositulemusi kergesti iile kanda madalamale tasandile edasiseks

rikete "kandidaatide" hulga minimeerimiseks. See voimaldab hoida rikete

"kandidaatide" keerukuse igal tasandil nii vidikese kui véimalik. Rikete

mudel, mis defineeritakse alternatiivsetel graafidel, jadb samaks skeemi

iga kirjeldustasandi puhul, erinev on ainult mudeli interpretatsioon. Uus

meetod vOimaldab minimeerida rikete simuleerimise mahtu vorreldes

traditsiooniliste meetoditega ja minimeerida rikke tdpse asukoha

madramiseks vajalike signaalide mootmiste arvu.

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ В БОЛЬШИХ

ИНТЕГРАЛЬНЫХ СХЕМАХ

Раймунд УБАР

Представлен новый, основанный на альтернативных графах
иерархический метод диагностики неисправностей в больших

интегральных схемах. Альтернативные графы позволяют описывать

интегральные схемы единообразно, используя один и TOT Xe

математический аппарат, одни и те же средства анализа и

универсальную — модель — неисправностей — Ha — всех — уровнях
представления схемы. Более того, выявленные на высшем уровне
результаты диагноза легко переносимы на следующий нижний

67

уровень, что позволяет свести число "кандидатов" неисправностей
на каждом последующем уровне до минимума. Основанная на

альтернативных графах модель неисправностей остается неизменной

Ha каждом уровне описания схемы, меняется лишь ее

интерпретация.
Преимущество предложенного метода перед традиционными

заключается в том, что удается минимизировать не только объем

моделирования неисправностей, но и число измеряемых сигналов, а

следовательно, быстрее определить точное место неисправности.

	b10721022-1995-1-1 no. 1 01.01.1995
	Chapter
	EESTI TEADUSTE AKADEEMIA TOIMETISED PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНИИ
	TEHNIKATEADUSED ENGINEERING ТЕХНИЧЕСКИЕ НАУКИ
	Preface
	STATICAL ANALYSIS OF GIRDER- OR CABLESTIFFENED SUSPENDED STRUCTURES
	Fig. 1
	Fig. 2
	Fig. 3.
	Fig. 4
	Untitled
	JAIKURTALAGA VÕI PINGESTUSTROSSIGA JAIGASTATUD RIPPKONSTRUKTSIOONI STAATILISE TOO ANALÜÜS

	PRELIMINARY ANALYSIS OF THE CAVERN STABILITY IN THE MAARDU GRANITE DEPOSIT
	Fig. 1. Cross-section of the overburden of the Maardu granite deposit.
	Fig. 2. Conceptual model. L,,,, maximum dimension of the model.
	Fig. 3. Cavern shape. L, cavern width; H, cavern height; A, the angle of the inclined side-wall
	Fig. 4. Cable bolt geometry and joint pattern.
	Untitled
	Fig. 5. Optimum orientation for the RPQ-1S cavern in the granite mass. Fig. 6. Displacement vectors for the RPQ-2S unreinforcement model (the ratio of the average horizontal stress to vertical stress K = 0.6).
	Fig. 7. Principal stress vectors for the RPQ-2S unreinforcement model (K = 0.6).
	Fig. 8. Displacement vectors for the RPQ-2S reinforcement model (K = 0.6).
	Untitled
	Fig. 9. Cable forces (A) and strains (B) for the RPQ-2S model.
	Table 1 Block properties for the modelling
	Table 2 Joint properties for the modelling
	Table 3 Unscaled and scaled rock cable properties
	MAARDU GRANIIDIMAARDLA KAEVEÕÕNTE STABIILSUSE ESIALGNE ANALÜÜS

	COMPUTING THE STATICS AND DYNAMICS OF AIRPLANE AILERON POSITION CONTROL USING THE NUT LANGUAGE
	Fig. 1. Fly-by-wire type aileron position control system.
	Fig. 2. Notation of two- and four-port FE models depending on the input and output variables.
	Fig. 3. Notation of six- and eight-port FE models according to the scheme of variable pairs.
	Fig. 4. Notation of singular input-output of the multi-port FEs.
	Fig. 5. Functional scheme of two cascade electro-hydraulic amplifier, where Rl-R8 — hydraulic resistances, Nl, N 2 — nozzle-and-flapper valve resistances, and lEI-lE4 — tee couplings.
	Fig. 6. Block scheme of multi-port elements for the nozzle-and-flapper valve.
	Fig. 7. Oriented graph for the nozzle-and-flapper valve.
	Fig. 8. Schemes of four-way servo valve slits
	Untitled
	Fig. 9. Schemes of four-way servo valve resistances in pairs, connected with chambers of hydraulic cylinder.
	Fig. 10. Scheme of hydraulic cylinder CY with piston PI, rod R, and a flow through piston QS.
	Fig. 11. Block scheme of multi-port elements of a cylinder without piston CY.
	Fig. 12. Eight-port form Y/C2O oriented graph of a piston with a rod, a flow through the piston, and the friction forces.
	Fig. 13. Scheme of a crank mechanism for the control of the position of an aileron.
	Fig. 14. Oriented graph of a crank mechanism with an aileron, form YO/O.
	Fig. 15. Block scheme of the subsystem "hydraulic cylinder" chDyn form ZO/C, where the models: cylDyn – cylinder without a piston, piscYDyn – piston with a rod and a flow through, vel and ver — volumetric elastances of hydraulic cylinder chambers, lEI and lE2 – tee couplings.
	Fig. 16. Block scheme of the subsystem multi-port models for the complete calculation system of the transient response of the aileron angle position fi.
	Table 1 Processes in EHPCS of an aileron
	Table 2 Subsystem – input device, position feedback, flight control computer, and electromechanical transducer
	Table 3 Subsystem — nozzle-and-flapper valve and servo valve
	Table 4 The models for servo valve resistances RS
	Table 5 The multi-port models for servo valve resistances RS in pairs, connected with chambers of a hydraulic cylinder using tee coupling IE
	Table 6 The multi-port models for servo valve resistances RS in pairs, connected with chambers of a hydraulic cylinder
	Table 7 Models for calculating the static and steady-state characteristics of servo valve with a hydraulic cylinder and a piston orifice
	Table 8 Models of servo valve for calculating the complete control system
	Table 9 Subsystem – a piston with a rod, a flow through the piston, sealing friction and deformation
	Table 10 Volume elastances of hydraulic cylinder chambers
	Table 11 Crank mechanism with an aileron
	LENNUKI ELEROONI POSITSIOONIJUHTIMISE STAATIKA JA DUNAAMIKA ARVUTAMINE NUT-KEELE ABIL

	FAULT DIAGNOSIS IN VLSI DEVICES
	Fig. 1. Generation of the effect-cause relationship.
	Fig. 2. Alternative graph representation of a combinational circuit.
	Fig. 3. Fault backtracking in alternative graphs.
	Fig. 4. A digital system represented at the register transfer level.
	Fig. 5. Alternative graph representation of the digital system.
	Fig. 6. Diagnostic tree for the given test sequence.
	Fig. 7. Functional level fault diagnosis procedure.
	Fig. 8. Hierarchical design and test representation.
	Fig. 9. Lower level diagnostic tree and fault diagnosis procedure
	SUURTE INTEGRAALSKEEMIDE RIKETE DIAGNOSTIKA

	A SPLITTED SOLAR DOMESTIC HOT WATER SYSTEM
	Fig. 1. The layout of a conventional DHW and modified SDHW system.
	Fig. 2. Behaviour of a DHW and several modifications of the SDHW system during a summer day.
	Comparison of DHW and SDHW versions
	SEKTSIONEERITUD HELIO-SOOJAVEESUSTEEM

	SURFACE-ORIENTED TOOL SET AS A NEW ENVIRONMENT FOR PROCESS PLANNING AND CONCURRENT ENGINEERING
	Untitled
	Fig. 1. Examples of cutting kinematic: A — scheme of machining with turning tool, core drill, etc B — scheme of machining with mills the rotating parts, with rotating broach the rotating parts, etc.
	Fig. 2. Forming the types of cutting tools: A — longitudinal turning, B — form turning, C — turning with allowance dividing.
	Fig. 3. Kinds of the form features: A — constructional form feature, B — functional form feature, C — technological form feature.
	Fig. 4. Example of tool selection: A — part, prepared for the tool selection process, B — selected tools.
	Fig. 5. Engineering environment’s interrelations in the surface specific conception.
	Fig. 6. Example of possible machine tool variation depending on production conditions
	DETAILI PINDADEGA MAARATUD INSTRUMENTIDE HULK KUI TEHNOLOOGIA JA TOOTE INTEGREERITUD PROJEKTEERIMISE KESKKOND

	MISALIGNED JOURNAL BEARINGS
	Fig. 1. Misaligned journal bearing, / — journal, 2 — bearing bush
	Fig. 2. Effect of load on journal tilting angle, continuous lines — steel – bronze, short dashes — steel polymer (PA6).
	Fig. 3. The critical tilting angle of journal and the critical barrel segment curvature radius of journal vs. relative shear stress, A — contact region is shorter than the bearing bush length, B — contact region length is equal to bearing bush length, C — journal with barrel segments, continuous lines — steel – bronz;, short dashes — steel – polymer (PA6) (experiments with bronze bearing bushes, Fk =sxlo°)
	Fig. 4. The effect of journal tilting angle effect on friction coefficient, A — calculated characteristics; B and C — experimental results; B — steel journal – porous bronze bearing bush; C -- steel journal – bronze bearing bush (boundary lubrication, lubricant viscosity 0.02 Paxs, velocity 12.6 rad/s, r = 1.25 mm, A =O.OOl, y = 0.01).
	Fig. 5. Axially profiled bearing (with barrel segments), A — scheme; B — axial section, 1 — journal, 2 — bearing bush, 3 — arched segments, 4 — lubrication zones, 5 — grooves for accumulating wear products.
	Fig. 6. Friction torque vs. journal velocity, 1 — journal with two barrel segments, 2 — misaligned cylindrical journal, steel journal – bronze bearing bush (Ryy = 750 mm, Fyy =39 N, Fip =23 N, r=3.6smm, /=22 mm, \у = 0.001, Ка = 0.1 um).
	Boundary conditions of contact cases
	KALDTELJEGA LIUGELAAGERDUSED
	ÜLEVAATEID
	TEADUSE JA TOOTMISE LIIT
	Call for Papers

	List

	Illustrations
	Fig. 1
	Fig. 2
	Fig. 3.
	Fig. 4
	Fig. 1. Cross-section of the overburden of the Maardu granite deposit.
	Fig. 2. Conceptual model. L,,,, maximum dimension of the model.
	Fig. 3. Cavern shape. L, cavern width; H, cavern height; A, the angle of the inclined side-wall
	Fig. 4. Cable bolt geometry and joint pattern.
	Untitled
	Fig. 5. Optimum orientation for the RPQ-1S cavern in the granite mass. Fig. 6. Displacement vectors for the RPQ-2S unreinforcement model (the ratio of the average horizontal stress to vertical stress K = 0.6).
	Fig. 7. Principal stress vectors for the RPQ-2S unreinforcement model (K = 0.6).
	Fig. 8. Displacement vectors for the RPQ-2S reinforcement model (K = 0.6).
	Untitled
	Fig. 9. Cable forces (A) and strains (B) for the RPQ-2S model.
	Fig. 1. Fly-by-wire type aileron position control system.
	Fig. 2. Notation of two- and four-port FE models depending on the input and output variables.
	Fig. 3. Notation of six- and eight-port FE models according to the scheme of variable pairs.
	Fig. 4. Notation of singular input-output of the multi-port FEs.
	Fig. 5. Functional scheme of two cascade electro-hydraulic amplifier, where Rl-R8 — hydraulic resistances, Nl, N 2 — nozzle-and-flapper valve resistances, and lEI-lE4 — tee couplings.
	Fig. 6. Block scheme of multi-port elements for the nozzle-and-flapper valve.
	Fig. 7. Oriented graph for the nozzle-and-flapper valve.
	Fig. 8. Schemes of four-way servo valve slits
	Untitled
	Fig. 9. Schemes of four-way servo valve resistances in pairs, connected with chambers of hydraulic cylinder.
	Fig. 10. Scheme of hydraulic cylinder CY with piston PI, rod R, and a flow through piston QS.
	Fig. 11. Block scheme of multi-port elements of a cylinder without piston CY.
	Fig. 12. Eight-port form Y/C2O oriented graph of a piston with a rod, a flow through the piston, and the friction forces.
	Fig. 13. Scheme of a crank mechanism for the control of the position of an aileron.
	Fig. 14. Oriented graph of a crank mechanism with an aileron, form YO/O.
	Fig. 15. Block scheme of the subsystem "hydraulic cylinder" chDyn form ZO/C, where the models: cylDyn – cylinder without a piston, piscYDyn – piston with a rod and a flow through, vel and ver — volumetric elastances of hydraulic cylinder chambers, lEI and lE2 – tee couplings.
	Fig. 16. Block scheme of the subsystem multi-port models for the complete calculation system of the transient response of the aileron angle position fi.
	Fig. 1. Generation of the effect-cause relationship.
	Fig. 2. Alternative graph representation of a combinational circuit.
	Fig. 3. Fault backtracking in alternative graphs.
	Fig. 4. A digital system represented at the register transfer level.
	Fig. 5. Alternative graph representation of the digital system.
	Fig. 6. Diagnostic tree for the given test sequence.
	Fig. 7. Functional level fault diagnosis procedure.
	Fig. 8. Hierarchical design and test representation.
	Fig. 9. Lower level diagnostic tree and fault diagnosis procedure
	Fig. 1. The layout of a conventional DHW and modified SDHW system.
	Fig. 2. Behaviour of a DHW and several modifications of the SDHW system during a summer day.
	Untitled
	Fig. 1. Examples of cutting kinematic: A — scheme of machining with turning tool, core drill, etc B — scheme of machining with mills the rotating parts, with rotating broach the rotating parts, etc.
	Fig. 2. Forming the types of cutting tools: A — longitudinal turning, B — form turning, C — turning with allowance dividing.
	Fig. 3. Kinds of the form features: A — constructional form feature, B — functional form feature, C — technological form feature.
	Fig. 4. Example of tool selection: A — part, prepared for the tool selection process, B — selected tools.
	Fig. 5. Engineering environment’s interrelations in the surface specific conception.
	Fig. 6. Example of possible machine tool variation depending on production conditions
	Fig. 1. Misaligned journal bearing, / — journal, 2 — bearing bush
	Fig. 2. Effect of load on journal tilting angle, continuous lines — steel – bronze, short dashes — steel polymer (PA6).
	Fig. 3. The critical tilting angle of journal and the critical barrel segment curvature radius of journal vs. relative shear stress, A — contact region is shorter than the bearing bush length, B — contact region length is equal to bearing bush length, C — journal with barrel segments, continuous lines — steel – bronz;, short dashes — steel – polymer (PA6) (experiments with bronze bearing bushes, Fk =sxlo°)
	Fig. 4. The effect of journal tilting angle effect on friction coefficient, A — calculated characteristics; B and C — experimental results; B — steel journal – porous bronze bearing bush; C -- steel journal – bronze bearing bush (boundary lubrication, lubricant viscosity 0.02 Paxs, velocity 12.6 rad/s, r = 1.25 mm, A =O.OOl, y = 0.01).
	Fig. 5. Axially profiled bearing (with barrel segments), A — scheme; B — axial section, 1 — journal, 2 — bearing bush, 3 — arched segments, 4 — lubrication zones, 5 — grooves for accumulating wear products.
	Fig. 6. Friction torque vs. journal velocity, 1 — journal with two barrel segments, 2 — misaligned cylindrical journal, steel journal – bronze bearing bush (Ryy = 750 mm, Fyy =39 N, Fip =23 N, r=3.6smm, /=22 mm, \у = 0.001, Ка = 0.1 um).

	Tables
	Untitled
	Table 1 Block properties for the modelling
	Table 2 Joint properties for the modelling
	Table 3 Unscaled and scaled rock cable properties
	Table 1 Processes in EHPCS of an aileron
	Table 2 Subsystem – input device, position feedback, flight control computer, and electromechanical transducer
	Table 3 Subsystem — nozzle-and-flapper valve and servo valve
	Table 4 The models for servo valve resistances RS
	Table 5 The multi-port models for servo valve resistances RS in pairs, connected with chambers of a hydraulic cylinder using tee coupling IE
	Table 6 The multi-port models for servo valve resistances RS in pairs, connected with chambers of a hydraulic cylinder
	Table 7 Models for calculating the static and steady-state characteristics of servo valve with a hydraulic cylinder and a piston orifice
	Table 8 Models of servo valve for calculating the complete control system
	Table 9 Subsystem – a piston with a rod, a flow through the piston, sealing friction and deformation
	Table 10 Volume elastances of hydraulic cylinder chambers
	Table 11 Crank mechanism with an aileron
	Comparison of DHW and SDHW versions
	Boundary conditions of contact cases

