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Abstract. This paper presents a calculation method for the prestressed suspension structures

stiffened by a girder or a stretching cable. For both structures, the relative deflection was found
from a cubic equation where support displacements were taken into account. Under the actionof the

temporary half-span load, the summary load was distributed into the symmetrical and

antisymmetrical parts. After calculation of deflections and inner forces under the action of the

symmetrical load, for secondary loading, the changed geometrical and statical parameters were

used. For both structures, numerical examples are given. This paper outlines our research and adds

to our previous studies.

Key words: suspended structure, hanging roof, suspension bridge, prestressed cable system, cable

structure, carrying cable, stretching cable.

1. INTRODUCTION

The behaviour of prestressed suspension structures stiffened by girders
and stretching cables was analysed. The common assumptions about the

linear elastic strain—stress dependence of materials and absence оЁ

elongations of hangers were taken into account. The cables were regarded
as geometrically nonlinear rods without bending rigidity, and stiffening
girders — as bended linear bars. The mutual action between the carrying
cables and stiffening members was regarded as a continuous contact load.

The action of the uniform whole-span and half-span vertical loads was

investigated. Those loads are typical of both roof structures and pedestrian
bridges.
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2. INITIAL EQUATIONS

Under prestressing, the condition of equilibrium for a cable may be
written as (Fig. 1A)

2
а ‹г

НО__Э =Py (1)
dx

or

2

2= 15, @
a

where

x, z — initial coordinates of the cable;
H - initial value of the horizontal component of the inner force;

Ро — prestressing contact load,;
f — flexure of the cable.

Under the action of the permanent or temporary outer loads, we may write

2 2
i dH[ig + —';'] = Po+P:» (3)
dx dx

where
w — vertical displacement of the cable;
H - horizontal component of the total inner force;

p — additional vertical load.

The compatibility condition of the relative elongation of the cable may be

expressed as the equation of equality of geometrical and elastic
deformations

1/2
l du dwf(dz Idw H-H, dz \?

—_— | — +— |— + =———||=—— | 1+ | —

‚
(4)
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Fig. 1
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where
u — horizontal displacement of the cable element;
ЕА - rigidity of the cable in tension.

To eliminate displacement u, we have to integrate Eq. (4) over the cable

span. For symmetrical loading, we may write

а

н-н° 2732
@

]ЁШ (i’£+ld_’”)dx - —BJ[l+ (ЁЁ) ] dx—fžfdx. (5)
ах \ах 2ах ЕА ах ах

0 0 0

For the integral
a

2312

J[l+ (Ё) ] dx,
dx

0

it is useful to develop the expression in square brackets as a series in the

powers of the function (dz/dx)*. The last member of Eq. (5) represents the

displacement of the supporting point of the cable. For the immovable

supports,

a

d_[—”dx = 0.
dx

0

For the linearly elastic supports, the displacement concerned may be

expressed as the product of the cable force and the translation of the

support under the action of the unit force. For the scheme in Fig. 18, we

may write

a

(H-H)b

fig [V, 6
dx E A cos” B

0 a a

where

b — horizontal projection of the anchor cable;
B - angle of inclination of the anchor cable;

E,A, — rigidity of the anchor cable in tension.
With a single cable loaded by the uniformly distributed load p, we obtain a

cubic equation for the relative deflection CO = wO/f

C(3,+3C(2,+ (2+p;)CO =p . (7)

where
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The horizontal component of the cable force is

Н =Н.+ Фбо(2 + 6) (8)

Equation (7) corresponds to the deflection function

x 2
w= WO[—Z—IJ. (9)

a

If we approximate the cable deflection by a trigonometric function

X
W = —W, COS — 10

0 2
(10)

and use Egs. (2), (3), and (4), then as a result of the Galjorkin procedures,
we obtain the cubic equation for the determination of relative

displacement the coefficients of which are very close to the coefficients of

Eq. (7):

* Н()
Ро =

D
— prestressing factor;

* P
‚

р =

o
— loading parameter;

2

Ро @

B, = o+
— horizontal component of the initial force

2f of the cable;

a2
p PC

— horizontal component of the loaded cable
2f force;

2
2ЕАб

Ф =—— — — rigidity factor of the cable;
3 (1+ к)

O =
j—r

— sag factor of the cable;
a

ЕАБ
U=
—а

factor of supports rigidity;
E A acos™ P

a a

к= 26° + 1,2 * +9 - geometrical factor.
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3 96.2 2048 32 + 1024 *

сo+—3Сo+ ——6+——2рo С.›о - "—SР . (11)
х х 37 37

For the inner forces of the cable, we obtain

3 n
H = HO+ E(DC"O 2+§Co . (12)

A comparison of deflection functions (9) and (10) is useful for the analysis
of the behaviour of a girder-stiffened system because the fourth derivative
of function (9) is lacking. For the stiffening girder, we have the condition
of equilibrium defined by:

d4w
Eblb— +p” =O, (13)

4
dx

where

Epl, — rigidity of the girder inbending;
р” - part of the load balanced by the stiffening girder.

3. GIRDER-STIFFENED SUSPENSION STRUCTURE

For the state of prestressing, we may apply Eq. (1), where the initial

load p is initiated by the weight of the girder and the beam system. Under

the action of the outer load, we have Eq. (13) for the stiffening girder and

for the cable (Fig. 2)

2 2
@да d

H [—š+—';] = ро+ Р, (14)
ах ах

where

р” — part of the load balanced by the cable.

Fig. 2
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After summing up Egs. (13) and (14), we have the condition of

equilibrium for the system as a whole:

йм [d2 @
Е1 ** -н —-z—+—'l']+ =

p =O, 15
dx4 dx2 dx2

-

where

p =py+р’ +p” —summary load of the structure.

For the initial state, we have the parabolic cable form (2).

Using boundary conditions, after integrating Egs. (142) and (15), муе сап

obtain exact expression for the coefficient ¢ = (ЕИН)“? in a complicated
transcendental form [l]. On the other hand, after suitable approximation of

the deflection function, we may obtain a proper result, very close to the

exact solution. For the whole-span loading, the deflection function may be

approximated by expression (10), which satisfies the boundary conditions.

Then, we may write the condition of compatibility (5) as in (12). Based on

the value (12) of H in the condition of equilibrium (15), we obtain a cubic

equation for the relative displacement

3 X 64Cocos—+2;2 —cosE+—B—-
— 7 1:2 2a Ic2

+

4ЕI

+e 2, ЫЬ
(1+ Ю — лх

0 ——ns —
cos &

+ (16)
ЕА/

a

Bроа”(1 + к) 4

+
-

cos
лх| _

64pa (1 +к)

3
--

nÕEAf?
2a л"ВА[°

Using the Galjorkin procedure and the designations of Eq. (7), we have

finally

4ЕI, (1+к)
3 96,2 | 2048 Ь Ь 32 * 1024 *Со’“_зёо*[—‹з*_'э_*тро] =

752 . (7)
T T EAf 37 3n

For the maximum bending moment of the stiffening girder, we obtain

2
2 К ЕЛ

а b b
max M = -E,l,— = ———,. (18)

2 2
dx 4a
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Applying the analogy of the equations for the single cable and using more

exact values of the corresponding numerical factors, we obtain the

equations for the relative deflection and inner forces

00+36+ (2+р+р))6) = Р, (19)

H=H +®L (2+§,), (20)

16
max M = ?pCDfCO, (21)

where

Eblb AAD . . .
p = —— —rigidity factor of the stiffening girder.

2
6Da

Other designations are asin (7).
For the half-span loading by a live load, it is useful to distribute the

summary load into symmetrical and antisymmetrical parts [2]. If we

denote pg — the initial load, p; — the additional load over the whole span,
and p, — the load on the right half of the span, then the symmetrical part of

the load will be p; =p; + 0.5p, and the antisymmetrical part p, = -0.5p,
sign x. For the load pg, we may apply the formulae (19), (20), and (21). For

the antisymmetrical load p,,, the deflection function may be approximated
by the trigonometric expression

у = -, sin H (22)
a

Then, we obtain the equation of deformation compatibility (5)

2 2

H=H+ ———"2> o (23)
4а° (1+ к)

where

H; - horizontal component of the cable force when load pg +p; is

applied.
After using the Galjorkin procedures, the condition of equilibrium (3)

for the load p, gives the following cubic equation for the relative

deflection §; = w,/f:

3 32 * 1024 *

Cl"' p+——2ps C-'l = '—SPu, (24)
37 37

where
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* Hs
.

p, =

15
— prestressing factor,

4

‚ 3pa (+x) P,
P = a

u 64EAS > 16Ф

2

p -

u 2f

The bending moment of the stiffening girder is expressed by

2
п Е1

M = ——iifc sin Х (25)
а° а

More exact values of numerical factors give

2
Н = H +4OC), (27)

max M = 16p®fT,. (28)

As in the formulae (23), (24), (25) and in the formulae (26), (27), and (28),
the geometrical and statical parameters

7 6, к, Ф,р

are to be taken as the corresponding values, changed under the action of

the load p;.
The summary displacement on the quarter-span of the cable has the

value

max w = —O.7swo—wl. (29)

The corresponding bending moment is

max М = o.7sрФи)+4рФи. (30)

4. DOUBLE-CABLED SUSPENSION STRUCTURE

For a prestressed double-cabled suspension structure (Fig.3 the

conditions of equilibrium (1) and (3) and the equations of deformation

compatibility (5) have to be written out for both the bearing and the

stretching cables []. Let us denote the parameters of the bearing cable by
index 1 and those of the stretching cable by index 2. The contact load
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between the cables, initiated by the prestressing forces, will change from

the initial value p( to the value p,. for a loaded structure. To determine six

unknowns (Hy, Hyp, Hy, Hy, p., and w), we have six equations, which

may be presented for parabolic cables and inclined anchor bars

2

но=
®

(31)
01 °2f °2,

2

gy
®

(32)
02

2f
°

2f,
2 2f

H, (d——-—w+-——‘) = p +p, (33)
2 2 c

dx a

2 2fа у 22H, [—2 - —2] = P, (34)
ах а

a

2f,x H -H

jd—w eO2

a+xy, (35)
dx a 2 2ах EIAI

-а

a

2f,x H,-H

[rla A (1+к)), (36)
dx a 2 2dx E2A2

-

where

f
2 4 1

Kl = 261+1.281+Ü1, õl =;,
L

2 4
_

#2

к, = 282+1.282+1‘)2, 82 =— 6

Fig. 3.
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а -

ElAlbl
а-

E2A2b2
I =3 2

7

,=N
ЕАа ©оs” В, E,A_,acos” B,

First, we can eliminate the unknown contact load p_, then, instead of Egs.
(33) and (34), we have only one equation

2
d 2

(H,+H) — += (H,f,~Hyf,) = p. (37)
ах а

If the load is distributed over the whole span, we may approximate the

deflection function as in (10) for a single cable or for a girder-stiffened
structure. Then we obtain the following system of equations:

2
nw

0 x 2
(Hl +H2) —4a2

СОS
2—a-

+

? (Hlfl —H2f2) =р, (38)

(Н, -Нор @+кр 4f,w, mw,
Ba 2 )

171 na 16а

2 2

(Н2——Нo2) (1 +к2) —4f2wo W,
ее

о— +— (40)
E2A2 Ла 16а

To determine the relative deflection CO = w,/f, after using the Galjorkin
procedures we obtain the following cubic equation:

96
(149 o+ = ( - ом) 6) +

T

2048 2 32 +* *

+[-——6—(l+oc w)+——žpo]šo=p ,
(41)

T 37

where

f 2 E2A2 (1+ Kl)
o= —; \у =—— — - geometrical factors,

f 1 EIAI (1+ K2)

» Ho+Hp
|

Py ==&
- prestressing factor,

2
PР* =—; P= Р®_

— оаа parameters,
Ф 2/
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2ЕА 8"
Ф =—— —cable rigidity parameter.

3(l+xl)

For the horizontal components of the cable forces we have

3
3 TH 1 = Hol+E(D€o[2+šcoj' (42)

3
3 TH 2 = Ho2— ЕЧ’ФСО [2(l—' s—2'‹;o) (43)

Based on an approximate solution, we obtain Egs. (41), (42), and (43). At

the same time, the exact equations result in the following system:

(I+\) o+3(l-oy)o+[2(l+aly) +py60 =Р, @44

H =H, +®(,(2+§,), (45)

Н, = Н, - \Фбо(2o- 6) , (46)

For a live-load loading over the right half-span, the procedure was the

same as for a girder-stiffened structure. For the symmetrical part of the

load ps = p; + 0.5p,, we used Eqs. (44), (45), and (46). Next, the changed
geometrical factors f, f,, o, 8,9., K, K,, and y and also initial cable

forces Hg; and Hg, were used flor t%xe antisymmetrical loading p, = —-0.5p,
sign x. Approximating the deflection function as in (23) and applying it to

Egs. (3), (5), and (6) for the cable forces and displacements, we obtain

2
3n 2

H 1 = Н„+ТФСI, (47)

2
3n 2

3 32 +* 1024 *

(I+\%)& + —5Ро6, =—5Р,› (49)
371 T

where

2

* Hsl +Hs2 * Pv pva
ро = —— , P= —, P= —

4Ф У° 16Ф У 47

For the parabolic approximation of the deflection function, we obtain

correspondingly
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(I+y)C)+py6; = P (50)

2

H, = H,+4%C), (51)

2

Н, = H_,+4y®{;. (52)

5. NUMERICAL EXAMPLES

Let us have two types of bearing structures for a pedestrian bridge with

the following parameters:
1) middle span [ = 2a = 64 m

2) sag of the bearing cablef= 6.4 m

3) span of the anchor cable b =24 m

4) inclination of the anchor cable tg Bl =0.75

5) rigidity parameters of the bearing cable (& 73.5 mm)

E;=0.16 - 10° N/mm?, A, =A, = 24.92 cm?
6) loads on the spanning member:

the whole dead load 6.0 kN/m,
the whole live load 12.0 kN/m.

5.1 Girder-stiffened structure

For the stiffening girder, a HEA 1000 section with the parameters
Е, = 0.21. 10° М/тт2‚ Г, = 553,800 ст4‚ W, = 11,190 cm> was chosen.

The initial load, balanced by the cable, consisted of the weight of the

erecting units of the girder system (part of the dead load) ро = 2.0 kN/m;
the rest of the dead load p; =4.0 kN/m, the whole additional load

pl+py =l6 kN/m.

Geometrical factors of the structure:

5= 7
= 0.2, fi=——E-f-b——3—=l.46s,

a Е А acos” B
аа

2 4
% = 28*+126* + @ = 1.547.

Rigidity parameters:

2 BE,I, (I+x)
ф = 2ЕА9_ - д175 .10°М, eR - 0.325.3(1+%) Eaf

Prestressing factors:
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2

Po » Ho
H, =— = 160К№, Ро =— = 0.0383.

2f Ф

Load parameters:

2 P4.0 + 32
deadload: P =

203%
> 320 К№ —р* =

—= 0.07665,! 2. 6.4 1 Ф

2
16.0 - 32

summary load: P =

===
= 1280 kN, р= š = 0.3066.

From the cubic equation (19) for the dead load, we obtain CO = 0.02694

and for the total load, {, =0.0998. The respective displacement
Wy = f has the values 0.173 and 0.639 m.

Deflection under the action of the live load was wy=0.639 -

0.172 =0.467 m.

The horizontal component of the cable force (20) had the value

H = Ho+d>§o(2+§o) = 160+875 = 1035 kN.

The maximum bending moment (21) of the stiffening girder was

max M = p(I)jCO = 0.725 -4175-6.4 - 0.0998 = 1933 kN-m.

На live-load is distributed over the right half of the span, we have 10

divide the load into symmetrical and antisymmetrical parts:

p, =40+0.5-12.0 = 10.0kN/m,

p, = —0.5-12.0 sgnx kN/m.

From Egs. (19), (20), and (21) and the load p,, we have

2
10.0 - 32

p. = ——— = 800kN/m, р* = 800 = 0.1916,
$ 2 .6.4 $ — 4175

CO = 0.0647, ир = 0.414т, Н,= 160 + 0.0647 . 2.0647 . 4175 = 718 КМ№,

М, = 0.5а = 0.75 - 0.725 . 4175 - 6.4 - 0.0647 = 940КМ/ т.

For the load p,, we took into account the changed geometrical and statical

parameters
81

f=64(1+0.0647)=681m, o = 6—3ž— = 0.2128,

k = 1.558, D = 4885 kN, p = 0.620.
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The prestressing and load parameters forEq. (26) have the values

* Нs=—Ш=О.o367s,
Pos= 40 — 4.4885

2
2

BT 0\E 0 43vSNР,= о7
<

2.681

* Pv
p. = — = 0.00577.

У 16Ф

From Eq. (26), we now obtain {, = 0.00878, on the quarter of the span
и = 0.75 и +6/ = 0.37 т ог b.25 m, respectively.

The maximumlbending moment (28) is

тах М = 940 + 4рФ]‘Сl =940 + 681 = 1621 kN-m.

5.2. Double-cabled structure

For the stretching cable, the rope & 63 mm with the rigidity parameters
Ey=o.l6-10kN -mm?, A,=A, =lB34cm®> was chosen. The

prestressing forces were induced by the initial contact load pg, the
minimum value of which was determined as py=4.s kN/m to retain

tension in the stretching cable; then, we took into account the whole dead

and live load. So we applied p; = 6.0 kN/m and p; +p, = 18.0 kN/m.

The geometrical factors of the structure were:

5,‚62
h
-ОЛo= 4.0m,:fz—--4 т6.fl —

õl = 0.2,52 = 0.125,к| = 1.547, к, = 0.8850

E2A2(I+KI) ElAlbl
V= > =0.994, = =—а

= 1.465,
ЕА (1+к) EA, acos” В,

E, A,b

9, = —— = 0.8535.

E,A ,acos” B,

The value of the rigidity factor of the cable had the same value as that of

the girder-stiffened structure:
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2ElAlõf
õ= -L > 175kN

3(1+K))

The prestressing factors were:

2 2

Но =O7 = 360 kN, Ноз = о- = 576 kN,
2fl 2f2

H +H
* 01 02

The load parameters for the dead load and the total load had the values:

322 Р

p, = 00732—480 кМ, p; =
—

= 0.1150,1 2.6.4 Ф

2

p= 18032
— j44OkN, p* =

2
= 0.3450.2.6.4 Ф

From the cubic equation (44), we obtained the relative deflection

€ =0.0377 and §, = 0.1095. The corresponding displacements wg =fC
had the values 0.7Ь1 m and 0.24]1 m. Maximum displacement under the
action of live load was:

wy = 0.701 - 0.241 = 0.460 m.

The horizontal components of the cable forces were:

H, = Hy +<l>§o(2+C_,o) = 360+964 = 1324 kN,

Н, = Н, - \Фбо(2o-6) = 576-541 = 35kN.

To calculate the displacements and inner forces under the action of a live

load on the right half of the span, we had the following symmetrical and

antisymmetrical loads:

ps=l2'OkN9 pv=_6-Osgnka.

For the symmetrical part of the load, we had

CO = 0.0743, и = 0.476 т

The horizontal components of the cable forces were:

Hy = Но + Фб)(2+ 60) = 1003 kN,
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H, = Hy,-y®{,(2a-,) = 198 kN.

The changed geometrical and statical parameters for the load p,, were:

f = 64+0476 = 6.876m, f, = 4.0 -0.476 = 3.524m, o = 0.5125,

õl = 0.2149,52 = 0.1101, к, = 1.560, к, = 0.8779,

2—ElAlõf
y=1.003, ®=————(l+x) = 4795 kN.

The prestressing factor after loading by p, was:

+ STOUR] STAONLISY, 1084
Pos ”

4Ф— 4.4795

The load parameters were:

2 P
0-32

p - 0032—ADO T e—* = 0.00626.
v 2.64 У° 16Ф

The relative displacement Cl was found from Eg. (50)

, = 0.0822, w, = 0.565m.

On the quarter-span we had:

w= 0.75W0 + W= 0.922 m

ог у = 0.75и —п) = -0.208 т.

The horizontal components of the cable forces were:

H, = H_ +4®(; = 1003+130 = 1133 kN,
51 1

Н, = Н, +4\уФО = 198+ 130 = 328 КМ.

6. COMPARATIVE ANALYSIS

The girder- and cable-stiffened suspension systems are similar in

behavioural and calculational aspects. Both for a single cable and for the

compound structures, the deflection parameter may be found from a cubic

equation. The studies covered the whole— or half-span uniformly
distributed loads for parabolic cable structures. It is interesting to mention
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that for both the single and the double cabled system, the parabolic
distribution of displacements was in agreement with the exact solution of

the problem [']. For a girder-stiffened structure, the exact solution may be

found from the complicated transcendental equation [*] and the parabolic
distribution of the displacements can describe the behaviour of the

structure only approximately. For a girder, it is related to the fourth

derivative in the condition of equilibrium. Fortunately, the results of

approximate solution were very close to the exact values.

Based on our analysis, the following conclusions can be drawn:
6.1. The relative displacements of different suspension structures may be

found from similar equations (7), (19), and (44), which can be defined

as slightly nonlinear (Fig. 4). The approximate value of CO may be

found as the linear solution of the corresponding equation.
6.2. Displacements of supports influence the cable behaviour to a great

degree. They are taken into account Dy the factors 9 and «x; the latter
is included into the parameters Py P > Ф, р, апа W.

6.3. For part-span loaded structures, it is useful to divide the entire load

шю symmetrical and antisymmetrical parts. The principle of

superposition as applied to geometrically nonlinear structures was

discussed in [2]. To calculate the structure under the action of an

antisymmetrical load, the changed geometrical ап@ statical

parameters of the system must be taken into account.

6.4. With whole-span loading, the girder-stiffened and double-cabled

structures show similar quality of deformations. Because of parasitic
influence of greater prestressing loads, the final cable forces have

greater value for the double-cabled structures. The advantages of the

girder-stiffened structures show in the case of part-span loading. The

girder-stiffened structure is also characterized by somewhat smaller

Fig. 4
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anchor forces. On the other hand, steel consumption for the girder is
to an order greater than for the stretching cable.
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JAIKURTALAGA VÕI PINGESTUSTROSSIGA JAIGASTATUD
RIPPKONSTRUKTSIOONI STAATILISE TOO ANALÜÜS

Valdek KULBACH

Artiklis on esitatud iihtne meetod eelpingestatud rippkonstruktsiooni
kandevoime arvutamiseks juhul, kui siisteemi jdigastamiseks on kasutatud

kas jdikurtala voi pingestustrossi. Molemal puhul saab konstruktsiooni

suhtelise ldbipainde leida kuupvorrandist. Arvesse on voetud tugede
rohtsiirdeid. Ajutise koormuse mdjumisel poole silde ulatuses jaotatakse
kogukoormus siimmeetriliseks ja antisiimmeetriliseks osaks; viimase
toime arvutamisel ldhtutakse esimese koormusastme mojul muutunud

geomeetrilistest ja staatilistest parameetritest. Mdlema konstruktsiooni
kohta on esitatud arvutusndited.

АНАЛИЗ СТАТИЧЕСКОЙ РАБОТЫ ВИСЯЧИХ

КОНСТРУКЦИЙ С БАЛКОЙ ЖЕСТКОСТИ ИЛИ С

НАПРЯГАЮЩИМ ТРОСОМ

Валдек КУЛЬБАХ

Представлена общая методика расчета несущей способности

предварительно напряженных висячих конструкций, жесткость

которых обеспечивается или балкой жесткости, или напрятающим
тросом. В обоих случаях относительный прогиб системы — описы-

вается кубическим уравнением. Приняты во внимание горизонталь-
ные смещения опор. Для случая действия временной нагрузки на

половине пролета суммарная нагрузка разделяется на — симмет-

ричную и асимметричную части; при расчете системы на действие

второй части нагрузки учитываются измененные геометрические и

статические параметры системы. Для обоих видов — конструкций
приведены примеры расчета.
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