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Abstract. First years after the treatment (in 1987) oi forest soil with mineral fertilizers

and powdered oil-shale ash in a heavily damaged 50-year-old Scots pine ecosystem
showed a comparatively small effect (8<0.95) of liming on the stand characters.

However, in comparison with the effect of only NPK fertilization on the volume growth
and the health state of trees, liming (NPK+oil-shale ash) tended to increase the positive
influence of fertilizers. Under the influence of oil-shale ash the mortality of the trees

was lower, the density of the stand rose more, and the mean radial increment of trees

was by 269 greater than after the NPK treatment without a lime agent.
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INTRODUCTION

A great number of investigations into the growth of different plant
species in polluted areas and on highly acid forest soils show that soil

chemistry can essentially affect the growth of trees as well as ground
vegetation. According to an ecosystematic hypothesis put forward by
Ulrich (1981, 1982) acidification processes (natural acidification plus
that caused by acid deposition from the atmosphere) in soils cause the

decoupling of the biomass production/decomposition cycle and lead to

mobilization of soil-bound metal ions, primarily aluminium, manganese,
and iron. Toxic effects of these ions, particularly the toxicity of Al in

forest soils coupled with the deficiency of Ca, cause the reduction of the
total mass of fine roots, then the disruption of the water status in trees,
disturbances in the plant uptake of base cations, nutrient elements N and

P, the infection of roots and shoots by pathogens and, finally, the death
of affected trees. The data about the relation between the survival rate

and root growth for conifers indicate that, for instance, the Norway spruce
have 50% survival at 559% root growth reduction under acidification.
However, already a 30—35% root growth reduction may lead to a 100%
mortality in the long-term perspective (Sverdrup & Warivinge, 1993).
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In addition to direct toxicity, Al essentially interferes with the uptake
of Ca by fine roots when the soluble ions are in equimolar concentrations.
In the growth process Ca is incorporated at a constant rate in the produc-
tion of sapwood from cambial derivatives. The demand for Ca per unit

area of cambium is essentially constant. Suppressed cambial growth
reduces the functioning of sapwood as it is continuously transformed into

the heartwood core (Shortle & Smith, 1988). Typically both healthy and

declining trees have the same number of sapwood rings, but in healthy
trees the rings are wider.

Some laboratory studies on the dependence of spruce injuries on the
Al concentration and the existence of Ca in the soil suggest that the
Ca/Al ratio plays an essential role in the decline of forests. Rost-Siebert

(1983) mentioned that a reduction in plant growth occurred at Ca/Al
ratios below 2.0. Yet Ogner & Teigen (1981) in their experiments with

potted spruce seedlings did not find any eifect of Al on the growth of
various spruce clones at a soil pH of 3.2 and Ca/Al ratio of 0.1 of the soil
solution. The growth of eucalyptus was even found to be stimulated under
the influence of aluminium (Mulette, 1975).

The growth characters of many tree species have quite frequently been
found to be badly influenced as soluble Al rises in the soil or the Ca/Al
ratio decreases in the root zone of trees (Goransson & Eldhuset, 1987;
Arovaara & Ilvesniemi, 1990; DeWald et al., 1990; Ilvesniemi, 1992;
Sverdrup & Warivinge, 1993). Nevertheless, the importance of Al toxicity
for plant injuries does not seem to be very clear. It is evident that big
differences in experimental results still exist.

Foresters and researchers in Finland have noteworthy experience in

long-term and large-scale experimenting with the influence of liming on

soil characters and on the growth of conifer species. The use of lime
material in pine and spruce forests did not yield positive results for the
stand’s volume growth in a great number oi the cases of the first post-
treatment. The negative efiect of liming was often found to be alleviated

by applying nitrogen fertilizers (Derome et al., 1986). Considering the

experience of Finnish colleagues we did not use the lime material (oil-
shale ash) without fertilizers in our experiment.

Liming has been a common measure to regulate the soil pH of non-

calcareous agricultural soils all over the world. In Estonia powdered oil-
shale ash as a cheap and available lime material has been widely used
on agricultural land, but not on forest soils. No results of oil-shale ash

liming of mineral forest soils are known to us as yet. Thus, the results of
this experiment may be the first attempt to describe the efiects of oil-shale
ash on the growth of a forest stand. This is a continuation of presenting
the results of a liming experiment in Pikasilla Forest District, Estonia,
in a heavily degraded middle-aged pine stand. The liming effects of oil-
shale ash on the forest soil characters of the stand were described in a

previous paper (Terasmaa & Sepp, 1994).

MATERIAL AND METHODS

In 1987 the sampling plots (area of each 0.1 ha), not treated (un-
fertilized plots) and fertilized only with mineral fertilizers (N;50P100K100)
or with mineral fertilizers (in the same dosages) plus powdered oil-shale
ash (10000 kg-ha-!, that is about 7500 kg CaCOs), were set up in a

50-year-old pine stand of Vaccinium site type. The stand was growing on

poor sandy podzol (the layer of sand >2.0 m), where the A-horizon was

practically lacking. The main characteristics of the site type are as

follows:
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— high soil acidity: the pH(H3O) values of the humus layer and of the

upper part of the mineral soil layers were 3.4—4.2;
— low Ca content in the root zone of trees т the soil: 0.25 meq- 100 g—l;
— high content of the extractable Al in the humus layer (up to

582 mg - 100 в-!) апа in the upper mineral layers (9.9—
123 mg . 100 в-!). It is essential to note that on this site type
the main mass of the fine roots of pine trees is under the humus layer.
In 1987 the stand was characterized by a high mortality of trees.

During the last decades the weakened and dead trees had already been
felled out for several times. Therefore the average density of the stand
had decreased to 539 of the fully stocked stand. The density of the stand
was not uniform. On different sample plots the density varied from 45 to

56%. In some spots of the stand totally unstocked gaps were found.
After setting up the sample plots, all the dead trees were again felled

on all the plots. Afterwards the number and the volume of dead trees

(died after 1987) were determined in 1989, 1991, and 1993.

The volume of living trees in the sample plots was calculated in 1987
and 1991. For the volume calculations the breast height diameter (D).3)
of all trees was measured with a caliper and registered by 1.0 cm

diameter classes. For at least 1/3 of the total number of trees on the

sample plots, the height was measured to an accuracy of 0.1 m. For the

determination of the radial increment of trees samples were taken with

an increment borer five years after the soil treatment with NPK and
oil-shale ash. ;

The growth trends of the stand in different sample plots were deter-
mined using the calculated data.

RESULTS AND DISCUSSION

The long-term experience in the fertilization of Estonian forests has

shown that a positive effect of mineral fertilizers on the tree growth
becomes quickly apparent. In pine stands of quality classes lI—III of
Vaccinium site type, the positive effect of mineral fertilizers had usually
lasted for five to eight years and in middle-aged forests the volume of
the stand had increased 10.8 to 26.4 m®-ha-! (Seemen & Talli, 1992).
As was shown in an earlier paper (Terasmaa & Sepp, 1994) the liming
effect of oil-shale ash on the forest soil appeared quickly after the liming.
So, we hoped to see the effect of liming also in the growth of trees and
the condition of the stand. Changes in the main characteristics of the
stand from 1987 to 1991 are presented in Table 1. Quite a high mortality
of trees was characteristic of the stand during the first years after the
establishment of the experimental area. The number of dead trees was

particularly big on unfertilized sample plots with 360 dead trees per ha
in 1993. It was an abnormally high rate of dieback in comparison with
the data of two yield tables (that have been used in Estonia) for 50—60-

year-old pine forests of site quality class II:

During the whole monitoring period (1987—93) the mortality of trees

on the control (unfertilized) plots was by 67—889% higher than the data
in the yield tables referred. Evidently the number of dead trees was too

big for a middle-aged pine stand of low density. During the same period

Author and reference of yield table l N(u;gšešožšjšž,gatrrsefs
Tjurin (Krigul, 1969) 192

Mikhnevich (3axapos et al., 1962) 216
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Characteristics —

of living trees j

Diameter, cm 14.3

Height, m 15.8

Basal area, m?-ha-! ]

Volume, m3 - ha-! 12

Number of trees, ha—! 98

Density |
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the condition of the stand on fertilized (NPK) and limed (NPK+ oil-shale
ash) sample plots showed a tendency to improve. The number of dead trees

on NPK or NPK+ash plots was respectively 297 and 290 trees per ha.
The tendency towards an improvement of the forest condition after the

NPK or NPK+oil-shale ash treatment became even more evident when
the total set of dead trees was analysed by different diameter classes

(Fig. 1) or the difference in their mortality was shown as the percentage
of dead trees among the total number of trees (living+ dead) on the

sample plots (Fig. 2). After NPK+ ash treatment most of the dead trees
were classified as dominated or suppressed trees. The posttreatment
situation on the control plots and those fertilized only with NPK was not
similar to this one. On these plots there had also been dominants or

codominants among the dead trees, whose diameter and height markedly
exceeded the mean parameters of the stand.

The following circumstances prove that after the beginning of the

experiment the volume of living trees had grown mostly due to the effect
of oil-shale ash (Table 1):
— smaller absolute and relative number of dead trees;
— somewhat smaller mean stem diameter of dead trees. The differences
were not significant (8<0.95), but in 1993, for example, the diameters
of the dead trees on NPK+ ash, NPK, and untreated sample plots were

10.3+£0.1, 11.1+£0.2, and 11.0+0.2 cm, respectively.

Fig. 2. Percentage of dead trees on different sample plots
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From 1987 to 1993 the loss of high-quality stemwood through the death
of trees was by 409% smaller after liming than on unfertilized plots and

Бу 25% smaller than on NPK-treated plots (Fig. 3).
It is also essential that on untreated sample plots the density of the

stand fell from 0.51 to 0.45 due to the highest dieback of trees. The same

trend of change was observed on the sample plots fertilized with NPK.
It was only on the oil-shale ash treated plots that the density of the stand
did not decrease during the first years after the treatment.

The radial increment of the trees had shown a trend to grow already
at least 10 years before the beginning of the experiment (Table 2).
Probably it was directly caused by the high mortality of trees and a con-

tinual decreasing of the density of the stand. Therefore, the competition
between the survived trees slackened and their growth improved. A con-

siderable increase in the radial growth became apparent after the treat-
ment of the soil with fertilizers. On the unfertilized plots the mean five-

year radial increment was by 369% bigger than five years before the

experiment. On the NPK-treated sample plots the same index had grown

by 53%. However, the highest rise of the radial increment appeared after

liming — 79%.
In the liming experiments in Finland and Sweden, where mostly

dolomitic lime was used, the Scots pine in poor sites often reacted with
a slight growth decrease (Derome et al., 1986; Popovié¢ et al., 1988). In

these experiments the lime substance seemed to affect the tree growth

Fig. 3. Volume of dead trees on different sample plots

6—10 years 1—5 years 1—5 years
‚ before treatment before treatment after treatment

Version skos
e

¢|

х=5; l t х+5; I t xtSi l i

Unfertilized 4.96+0.28 — 5.16+0.24 — 7.01 +0.21 —

NPK 5.60+0.40 1.3 5.86+0.35 1.7 8.99 +0.33* 5.0

NPK+ash 457+0.31 0.9 4.87 +0.29 0.7 8.71+0.29* 49

* significant at the 0.1% level.

Table 2

Radial increment, mm, on sampling plots with different treatment
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negatively directly after the treatment and a small growth decrease was

usually comparatively long-lasting, up to 10—20 years. According to the
Finnish results, liming alone reduced the volume growth of different

pine stands by ап average of about 3% (0.15 m? -ha-!'-a-!) throughout
18 years (Derome et al., 1986). The results were different when the lime
material was used together with a nitrogen fertilizer. Particularly in

middle-aged or mature pine stands (age >SO years) on dry and poor sites

the interaction between lime and nitrogen was evident and the volume

growth of pine stands after CaN treatment exceeded the volume growth
both on untreated stands and on those treated only with Ca or N.

In Finland and Sweden the negative effect of liming without fertilizers
was stronger in spruce forests than in pine stands. And after complex
treatment in spruce stands the effect of the interaction between Ca and N

was usually not so marked as in pine stands.
In nitrogen-deficient stands the losses in growth after liming are

probably the result of a lower availability of nitrogen for the trees. Lime
stimulates the soil microbial activity but also the processes of the incorp-
oration of N into the soil organic matter. An impaired root and

mycorrhiza function may also occur. The negative short-term effects may

change into positive effects in a long perspective. The improved soil

chemistry leads to a better humus status, to an improved root functioning
and a better availability of mineral nutrients for the trees (Persson,
1988; Popovic et al., 1988).

On the whole, the effect of oil-shale ash liming on the growth and
health condition of the pine stand was not high. However, the first results

of its experimental use on mineral forest soil cannot serve as the basis
for essential conclusions. Still, the results give us some assurance to
continue our experimental work with powdered oil-shale ash in forests

with the purpose of regulating the high acidity of forest soils in some

sites to gain positive shifts in the forest life. Taking into account the low

price of the powdered oil-shale ash and the plentiful resources of this

liming material in Estonia, even a small trend towards an improvement
of forest condition on poor sandy soils would be a satisfactory final result

of the work. It is essential to note that oil-shale ash is not only a simple
liming material, but also a lime fertilizer consisting of numerous chemical
elements necessary for plant growth.
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