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Abstract. The aim of the present article is to report the author’s results in the field of

analysis and modification of mathematical models of plants. The structural schemes of

a plant and the mathematical model applied are presented. The model is presented as a

system of differential equations. This model contains 9 state variables, 4 driving variables,
and 14 parameters. The model’s stability and sensibility are discussed. For the sensibility
study the so-called sensibility matrix was calculated in two different time-points. For

the stability study of the model the so-called Lyapunov’s first method for studying
stability in non-linear systems was used. The stability study is carried out using a

linearized version of the model. A short description of the results of numerical experi-
ments conducted with our model is also given. At the present stage of research the model

fits satisfactorily the theory of plant growth.

Key words: mathematical biology and ecology.

INTRODUCTION

The basic research area in the field of modelling the growth of the

plant, not only in Estonia, but also in other countries, has been con-

nected to the modelling of agricultural plants and the coexistence of

plants of a single species. Very few studies have been conducted in the

area of modelling the coexistence of different plants. This field of study
is closely connected with the problems of diversity in nature, environ-
mental protection, pollution, and the rehabilitation of polluted environ-
ment.

The most common way of the representation of the growth and
coexistence of plants is by using systems of differential equations
(Kyaap & Kyaab, 1989). The models of plants and their coexistence are

usually built for studying some special effects which take place in the

nature. The present model was built to study light and nitrogen com-

petition in a single plant and in the coexistence of plants.
In modelling the coexistence of large plant communities on the basis

of a model of a single plant, there usually occurs the need for some

special degree-decreasing methods due to the lack of adequate computer
resources. For that reason it is very important to study different quali-
ties of the single plant model (as the model of coexistence is built using
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a model of the single plant), e.g. sensibility, stability, phase planes
(Anramonos, 1983a, 1983b; Nagrath & Gopal, 1984), and try to find out

possible incorrectness in the model, e.g. linear combinations of state
variables (Gill et al., 1991; Stoer & Bulirsch, 1980). In the present work

special attention is paid to the single plant model and to methods of
the analysis and modification of mathematical models of this type.

METHODS

1. Mathematical model of a plant

The mathematical model of a plant is presented as a system of ordi-

nary differential equations. The model is presented in this article in a

laconic way; a more detailed description of basic processes of the model
of this kind is given by K. Kull and O. Kull (Kyans & Kyaas, 1989). A
model which describes the growth of a tree during one vegetation period
was presented also by Svirizhev (Csupuxen, 1979; see also I'nymkos
et a1.,, 1983). |

For better modelling of the growth of a plant the method of dividing
a plant into horizontal layers and describing the growth of each layer
separately was used in the present project. The model will include only
two state variables: the mass of functional nitrogen pool (Nf) and the

mass of leaves (M) divided into layers. Tohelp understand the method
of modelling plant growth using layers a numerical example is given.

Fig. 1. Graphical interpretation of the plant’s model.
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Example

The thickness of the layer is 0.5 m. The initial value of the state

variable of height (H) will be 0.25 m. When during the numerical

experiments the value of H reaches 0.5 m, additional equations of Nf
and MI for layer 2 (the structure of the equations for layer 2 will remain

the same as for layer 1) will be formed. 109% of the last values of Nf
and M! in layer 1 will be transformed to layer 2 as initial values for

Nf and MI!. Additional equations will again be formed when the value

of H reaches 1.0 m, 1.5 m, 2.0 m, etc.

Graphical interpretation of the plant model is shown in Fig. I.

State variables:

CI — mass of the carbon assimilates pool, kg;
Ms — mass of the trunk and branches, kg;
Mr — mass of the roots, kg;
H — height, m;
NI — mass of the moving nitrogen pool, kg;
Nc — mass of the organic nitrogen pool, kg;
Nm — mass of the mineral nitrogen pool, kg;
Nf[i] — mass of the functional nitrogen pool in the i-th layer of

a plant, kg;
Ml[i] — mass of the leaves in the i-th layer of a plant, kg.

Driving variables:

[C]] — concentration of carbon assimilates in the leaves, kg-kg™;
[[i] — light radiation in the i-th layer of a plant;
Sl[i] — area of leaves in the i-th layer of a plant, m?
p[i] — the leaves surface density in the i-th layer of a plant,

kg-m—2,

Notations:

h — number of layers;
i — current layer.

Model in the form of ordinary first order differential eguations:

Growth of the mass of the carbon assimilates pool

%CZL=’€s' 2h7 Nf[i] —k6-[Cl]-H—k7-[CI]-Mr— —
—škS'[Cl]Wf[i]—k9-[Cl]-Nf[h]; (1)

Growth of the mass of the trunk and branches

dMs

—g—="F6-[CI] - H; (2)

Growth of the mass of the roots

dMr

—7—=H7-[Cl]-Mr—kr-Mr; (3)

Growth of the height

dH Nf[h]
. (4)—d—t«=k9.[Cl].—[W———l[h] ;

.
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Growth of the mass of the moving nitrogen pool

NL
sn

Ry o Okpd- R201
7

=k4-Mr-Nm šklT kBX ‘
N ,X[Cl]-Nf[i]——h——l——-;, (5)

2Mili]
Growth of the mass of the organic nitrogen pool

dNc h
,——=k2- š Nf[i] — k3-Nc; (6)

Growth of the mass of the mineral nitrogen pool

_d_f(‘i_’tL"_;ks.Nc — k4-Mr-Nm; (7)

Growth of the mass of the leaves in the i-th layer of a plant

dMi[i]—————fldt‘— k- [CI] -Nf[i] — k2-Ml[i];
;

(8)

Growth of the mass of the functional nitrogen pool in the i-th layer of a

plant

dVf[i]
.

kpl-I[i]
k- [CI]-Nf[i]- —NI !

— =
O [C7] - NFI

——.ZMl[i]
— k2. žNf[i]. (9)

Calculation of driving variables:

Calculation of the concentration of carbon assimilates

[] = —a—-; (10)

2Ml[i]+C!
Calculation of the light radiation in the i-th layer of a plant

'

11)I[i]=lo-exp( —ke-gh;’Sl[j]/Sg);. (

Calculation of the area of the leaves in the i-th layer of a plant

Si[i]=Mi[il/p[il; (12)
Calculation of the leaves surface density in the i-th layer of a plant

pli] =kpl-I[i] +kp2. (13)

Parameters:

1. ke — light extinction coefficient, none;
2. Sg — area of plant, m2;
3. kpl and kp2 — leaves surface density coefficients, kg-m=2
4. k 1 — coefficient of functional .nitrogen pool increase,

day—;
5. k 2 — coefficient of organic nitrogen pool increase, day—!;
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6. k 3 — coefficient of mineral nitrogen pool increase, day—!;
7. k 4 — coefficient of moving nitrogen pool increase,

day—i.kg—i;
8. k 5 — coefficient of assimilates increase, day—;
9. k 6 — growth rate coefficient for trunks, kg-m—t-day—;

10. k 7 — growth rate coefficient for roots, day—l;
11. &8 — growth rate coefficient for leaves, day—!;
12. k 9 — growth rate coefficient for tree height, m-day;
13. kr — coefficient of root decrease intensity, day—!.

2. Sensibility study of the plant model

The study of the sensibility of dynamical models poses usually serious

difficulties, which are closely connected to problems of the stationary
state of systems. Antamonov (Anramonos, 1983b) has discussed these
models in biology.

For studying the sensibility of a model the so-called sensibility matrix

(Nagrath & Gopal, 1984), which contains sensibility coeificients S;; for
two different time-points, must be calculated.

_

Ayilyi
S„—

AOj/Oj
,

where o; — the value of the j-th parameter in this time-point;
Ao; — the change of this parameter in this time-point;
y; — the value of the i-th variable in this time-point;
Ayi — the change of this variable in this time-point;

The average absolute values of sensibility are also calculated for

each state variable and for each parameter.
For calculating the sensibility coefficients the programming language

TurboPascal 5.0, spreadsheet package Microsoft Excel 4.0, and a per-
sonal computer with the main processing units Intel 80386 and 80387

were used.

3. Stability study of the plant model

For the stability study of the plant model the so-called Lyapunov’s first

method of studying stability in non-linear systems (MuTponoabckuii,
1977) was used. The most common method for studying stability in non-

linear systems is Lyapunov’s second method (Boponos, 1979), but there

are great difficulties in applying this method to the models which have

a very high degree. Therefore, the study of the stability of our model
is performed according to Lyapunov’s first method with a linearized

version of a system used. -
Non-linear system

dX

—a=F)

where X=(f%1,...,Xn) — vector of the state variables;

F=ffw...,fn) — vector of functions.
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Linear system

dX

r545

where A is the Jacobian matrix of our non-linear system.

.

According to Lyapunov and Tsetaev’s theorem (Autamonos, 1983a),
a linear system is stable, if all the eigenvalues of matrix A have nega-
tive real parts (see also Nagrath & Gopal, 1984). A zero eigenvalue
means that the system comprises an equation that is a linear combina-
tion of some other equations (Gill et al., 1991, ch. 2).

The investigation of stability is also very closely connected with the

problems of the idealization of systems (JKaGoruncku#i, 1974) and
methods of decreasing the degree of a system (Kapreeaumusuan & I'anak-

THOHOB, 1976; see also I'mywkos, 1983).
The study of stability was carried out on a personal computer (pro-

cessors 80386/387) wusing the programming language Microsoft
FORTRAN.

4. Numerical experiments with the model

The system of ordinary differential equations was solved by using the
Euler method of solving systems of differential equations (Stoer &

Bulirsch, 1980). The reason why this method was chosen is that in the

present model there could be some equation(s) which is (are) a linear
combination of some other equations and therefore the more complex
methods may not work properly.

Numerical experiments were done by using a personal microcomput-
er with the main processing units Intel 80386 and 80387. For building
a computer program the programming language TurboPascal 5.0 was

used.
A user interface was built. It helps the user who is not familiar

with the programming techniques in TurboPascal also to use the pro-

gram without any difficulties.

RESULTS AND DISCUSSION

1. Numerical experiments performed with the present model

The numerical experiments were made using a personal computer with
the main processing units Intel 80386/387 (Table 1).

The graphical representation of the results of the numerical experiment
is shown in Figs. 2a—2i, :

|
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2. Sensibility study

The sensibility matrix was calculated for two different time-points
(t21=150 and #2=320 days). The calculated sensibility coefficients at

time-point /1320 days are presented in Table 2.

The average for the sum of the mass of the leaves is 2.8333 and that
of the mass of functional nitrogen pool is 2.95962.

According to the results, the most sensible state variables are the

mass of the functional nitrogen pool and the mass of the leaves in layers.
The parameter which affected the development of the plant the most

strongly is k 2 (the coeificient of the organic nitrogen pool increase). It
describes the process where the mass of the functional nitrogen pool (which
is divided into layers) changes into the mass of the organic nitrogen
pool (which is not divided into layers). The state variable Nc¢ (organic
nitrogen pool) has, according to the results, the lowest absolute average
of sensibility coefficients. The parameter which affects the development
of the plant the least is k6, the growth rate coefficient for trunks.

Comparing the study of the sensibility of the model PUU-1 carried out

by K. Kull and O. Kull (Kyans & Kynas, 1989, pp. 115—118 and 147—155)
with the results of the present sensibility study, we can see that the most

No, I Description , Value | Unit

1 Mass of the carbon assimilates pool 0.012 kg
2 Mass of the trunk and branches 0.05 kg
3 Mass of the roots . 005 . kg
4 Height 0.25 m

5 Mass of the moving nitrogen pool 0.004 kg N
6 Mass of the organic nitrogen pool 0.05 kg
7 Mass of the mineral nitrogen pool 0.03 kg
8 Mass of the funcional nitrogen pool (layer 1) 0.1 kg
9 Mass of the leaves (layer 1) 0.002 kg

10 Area of the leaves (layer 1) 0.6 m

11 &l ; 1 day-!
12 k2 " 0.03 day-!
13 k3 0.005 day—!
14 k4 0.17 day-!-kg-!
15 45 3.3 day-!
16 k6 0.0001 kg-m-!.day-!
17 k7 0.4 day—!
18 k8 6.5 day—!
19 %9 0.2 m-day-!
20 ke 0.5 —

21 kpl 0.08 kg-m-?
22 kp2 0.02 kg-m-?
23 kr 0.0025 day-!
24 dt-iteration step 0.1 day—!
25 Number of iterations 32000 —

26 10 1 —

Table 1

Initial values for numerical experiments



Fig. 2. Graphs describing the growth of

a — the carbon assimilates pool; b — the

mass of the trunk and branches; ¢ — the

mass of roots; d — height; e — the mass

of moving nitrogen pool; f — the mass

of organic nitrogen pool; g — the mass of

mineral nitrogen pool; A — the mass of

functional nitrogen pool in layers, I—7 —

first, second, etc. layer; i — the mass of

leaves in layers, I—7 — first, second, etc,
layer,
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sensible state variables in the present models are those that were divided
into layers (M! and Nf). In the present case the mass of roots comes

next. In the sensibility study of the model PUU-1 the most sensible state
variables were connected with roots (the mass of roots and the mass of
carbon assimilates in roots). The least sensible state variables in the

present model are the mass of the organic nitrogen pool and the plant
height. In the model PUU-1 the least sensible state variables were the
overall mass of the nitrogen pool (in this model only the overall sum of
the nitrogen pools in a plant was investigated as state variable) and the

height.
The above facts indicate that in a model where some state variables

are divided into layers those state variables may become the most sen-

sible ones.

At the present stage of research fundamental conclusions cannot be
made on the basis of those two sensibility studies of plant models, as the
studies were carried out in different time-points using different methods

of computing and different computer environments, which all affect the
final results.

- 3. Stability study

The eigenvalues of the linearized system of ordinary non-linear differ-
ential equations were calculated for two typical situations: (1) for the
model where dH/d{=o, e. g. the dimension of the system is not changing;
and (2) for the model where the dimension is changing, here the eigen-
values were calculated for two layers.

(1.1) Calculated eigenvalues at the point /=0:

0.0; —0.3379; +40.01358+0.03509i; 0.007944; —0.01573; —0.0001107;
—0.0028; —0.005955.

(1.2) Calculated eigenvalues in the neighbourhood of the stable point
(1==3200 days) (the neighbourhood was found by numerical experi-
ments as stated above): -
0.0; —I11; —1.165; —0.004899+0.02914i; —0.01301; —0.004601;
—0.0003307; 0.00001534.

The eigenvalues indicate that one of our equations is a linear combination
of some others (one eigenvalue equals zero). It is not difficult to find out

such dependence, as a more thorough investigation of the model shows
that there exists a precondition according to which the sum of all

nitrogen pools stays constant:

h

Nm+Nc+Nil+ 3Nf[i] =Ntota=const;
i=l

dNm dNc¢ dNI % dNf[i] |
i d d+š r

—

This kind of dependency can be easily removed if Ntotai occurs in /=0
as an input variable and one of the eguations of nitrogen (for example
Nm) is replaced by an eguation of subtraction

h .

Nm=Ntota|—Nc—Nl—-— ZNf[l]
i=l

After this modification of the model a new Jacobian matrix and new

eigenvalues must be calculated, because there can be more incorrectnesses
in the model and the linear combination can be more complex than stated
above.
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As it can be seen in f=o, there is an eigenvalue whose real part is

positive. This means that there exists a trajectory from this point which
leads the system to an unstable state. The absolute values of eigenvalues
are very small, which also means that the system is very “far” from the

state of stability. .
AN the calculated eigenvalues in the possible neighbourhood of the

stability point /=3200 (days) have negative values, which means that
the system is moving toward a state of stability and it is much closer to

stability as the absolute values of the eigenvalues are relatively big
(—111; —1.165, etc.).
(2.1) Calculated eigenvalues at the beginning of the first layer:

0.0; —0.2774; —0.00665740.01877i; —0.01698; 0.009908; —0.005628;
—0.0000278+0.00026541;

(2.2) Calculated eigenvalues before the creation of the second layer:
0.0; 0.1167; —0.08445; —0.02163+0.007881i; —0.009962;
—0.000006757; —0.005748; —0.002632;

(2.3) Calculated eigenvalues after the creation of the second layer:
0.0; 0.0; 0.0; —0.09877; 0.0; —0.005; —0.1481; 0.2133 E-17;
—0.052614-0.007619i; —0.03; :

(2.4) Calculated eigenvalues in the middle of the second layer:
0.0; 0.0; 0.0; —0.01107; 0.0; —0.005; —0.1427; —0.0521340.007824i;
—0.9291 E-18; —0.03;

(2.s)Calculated eigenvalues before the creation of the third layer:
0.0; 0.0; 0.0; —0.01163; 0.0; —0.005; —0.1478; 0.7502 E-18;
—0.05322+4-0.007419i; —0.03.

As it can be seen, when the degree of the model increases, there are

now four equations in the model which are linear combinations of the
others. One of these equations is, as stated above, one of the equations
of nitrogen. The other two zero eigenvalues come from two similar

equations which we obtained from dividing the plant into layers. The
fourth zero eigenvalue requires a deeper investigation of the applied
modelling process as there could be one more equation which is a linear
combination of some others. It could occur for example in the modelling
of the growth of the mass of the carbon assimilates pool or the growth of
the mass of leaves, trunks, and roots. (Among the eigenvalues calculated
in Section 1 there was a relatively small eigenvalue, which could occur

due to computation errors. This proves that there can be an equation which
is a linear combination of others.)

There are also some eigenvalues which have a positive real part, but
their absolute value is relatively small compared to those eigenvalues
which have a negative real part. The reason why there are eigenvalues
with a positive real part could be a calculation error, as a computer
operates only with real numbers with a fixed degree. In general it may
be stated that our model seems to fit the stability conditions, but in the

points considered here it is very “far” from the point of stability. The

model probably reaches the stable equilibrium point at a certain degree.

IDEAS ABOUT FURTHER WORK

The following is a presentation of an idea of a method which could be
useful in analysing mathematical models of a plant and plants’ coexistence.
It has not yet been applied to the present model.

A system of differential equations dx;/d¢é=fi(a, b, c, d,...x;), which
describes the growth of the plant (where x; — state variables; a, b, ¢, d...

— parameters of the system).
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We will search for a combination of parameters, when the given point
{x:} in a state space is a steady point. As the coordinates of the steady
point are given it is easy to calculate the values of dx;/d¢ in this point.

As there are usually very many parameters, then some of them could

be left constant and combinations of other nonconstant parameters could

be searched. (For example, in the model presented above, all the par-
ameters will be left constant except for parameters k7, kB, kr, and ke.
What are the values of the growth rate coefficient for roots, growth rate
coefficient for tree height, root decrease intensity coefficient, and light
extension coefficient, provided all the other coefficients which describe our

model stay constant, at which this possible steady point is steady?)
Assuming only two coefficients a and & are changing, then, in order to

dx,- la 0 = =Dzo 3
a=ao,

we will give to a instead of valuea 0 the valueal (Ae=al —ao) and
calculate all the values of De!. If we do the same with the coefficient b

we will get D%~Now we can write

ADgi= (D%, —D%)Aa+ (D%,—D% ) Ab;. i=]1,...,n,
where D% =D =D is the difference in the starting point. As

ADri=Dzxi — DY and in dividing D; by D% we will get

Dxi/D%, — 1= (D4/D% —1) Aa+ (D®!,/D® —1)Ab;

i=]1,...,n. ;
Assuming that the overall result of the change of the difference should

be zero, we will get the following system of eguations
0= (D2 /D%’—1) Aa+ (D% /D%—1) Ab;

i=1,...,n
By solving this system of equations we will get the linear approximation
to the change of a and .

It is obvious that in the case our model consists of two parameters
and four state variables, there can be no solution. A non-zero solution

can occur when there are more parameters than state variables, but then
the number of solutions will be infinite. In reality the linear approximation
is never accurate. Therefore it is reasonable to require that the decrease
of the change of the difference should be 2 or 3 times. In this way we

will get a solvable system:

Aav=n-[ 4 |D
Ab 1’

where V — given vector of decrease coefficients;
D — matrix [Dxi/D*% — I], which has n rows and 2 columns.
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