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VITALITY OF NORWAY SPRUCE AND SCOTCH PINE ASSESSED
BY THE CROWN CLASS AND RADIAL INCREMENT

Abstract. Crown damage and radial growth assessment is used for surveying forest

vitality in the total of about 200 Scotch pines and Norway spruces on 10 .permanent
plots. The crown damage was estimated using a five-class system. Regression analysis
was applied to determine relationships between radial growth and crown damage
variables. Social conditions of trees were expressed as the Kraft growth class; the com-

petition index was included in the analysis.
No effect of social conditions on radial growth was revealed. A statistically

significant correlation between the crown class and radial growth was found for

growth classes I and II; the correlation for pine was stronger than for spruce. In

general radial growth has had an increasing trend in recent years with decreases occusr-

ring when needle loss exceeded 609%. The correlation between radial increment and

needle loss is different for Scotch pine and Norway spruce due to their different

needle age and ability to compensate for needle loss.

Because of several methodological difficulties, the use of such surveys for the

prognostication‘of forest growth is risky.
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„ Introduction ,

The assessment of defoliation in individual tree crowns is used as a

method for surveying forest vitality in the monitoring programmes of

many countries (Salemaa and Jukola-Sulonen, 1990). However, visual
estimation of defoliation involves a number of methodological problems
and therefore significant variation may occur in the results of different
observers. Hence, comparison of visually estimated damage symptoms
with metric variables is of great value. Radial increment is a very
important metric variable since it is directly related to biomass pro-
duction. Reflecting the state of the site, social conditions of stands, and
former radial increment, the radial increment of a tree is not only one

of the most important diagnostic variables but also a measure of the

importance of other symptoms. A symptom not correlating with incre-
ment is not likely tobe useful in estimating the severity of injury. On
the other hand, interpretation of radial growth data poses a number of

methodological problems caused by numerous different factors influenc-

ing the width of the annual ring and, consequently, annual increment.
The most important factor is weather conditions, while such factors as

age, thinning of a stand, and competition of neighbouring trees can

either strengthen or compensate for the influence of weather conditions.
This makes it extremely difficult to determine the contribution of
individual factors to the variation of the width of annual rings. Con-

sequently, not even continuous reduction of the ring width through
several years can prove the effect of air pollution. Extrapolation from
a few individual trees to the whole stand is and has always been a

serious methodological problem (Steinlin, 1985).
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* > Therefore, researchers studying the relationship of the condition of
the crown and radial growth have obtained contradictory results.
Waring et al. (1980, 1981), Waring (1987), Schütt and Cowling (1985),
Schulze (1989),.and Salemaa and Jukola-Sulonen (1990) found that
any stress, if sustained, reduced the canopy, photosynthetic activity, and
storage reserves throughout the tree and also wood production due to
foliage decrease. Plochmann (1984), Kramer (1986), Schweingruber
(1985), and Schmid-Haas (1989) did not find any correlation between
canopy decline and radial increment. Their explanation is the following:
(1) there is a time lag of about 3—5 (10) years between .the regener-
ation of the crown and its reflection in the tree ring pattern; (2) stem
and crown dimensions, growth space, and the competition of neigh-
bouring trees can substantially outweigh the influence of crown damage
on radial increment; (3) the falling of older spruce needles can improve
the conditions for the remaining younger ones and increase their photo-
synthetic activity and production capacity.

Material and Methods

The total of about 200 increment cores were bored on ten permanent
forest plots in September-October 1991. The crown classes were

estimated for each tree by J. Frey. All trees were grouped into three

Kraft growth classes: I — superdominants (42.5%), II — codominants

(35.6%), and 111 — dominants (21.9%).
Usually defoliation is assessed as the degree of crown thinning in

a five-class system, taking o—lo% defoliation as class 0; 11—25% а$

class 1; 26—609% as class 2; 60% and more as class 3; and dead trees
as class 4 (Draft Manual..., 1986). We determined the combined
damage class on the basis of the defoliation rate, taking into con-

sideration also discolouration of needles and other visible damage
symptoms (sap flow, mechanical injuries). Thus, these data can be used
as information on the health of a sample tree in the five crown

class system: ` -
Class 0 — not damaged;
Class 1 — slightly damaged;
Class 2 — moderately damaged;
Class 3 — severely damaged;
Class 4 — dead.

The annual growth rates in each Kraft class in 1988, 1989, 1990, and

1991 were subjected to regression analysis against crown class variables
with the regression equation, correlation -coefficient, and significance
level calculated. The mean growth rates for the years 1980—1991 were

calculated and, dividing the annual growth (jz;) by the mean of 12 years
(jz1980~1991), the radial growth index (/;) was found for 1988, 1989, 1990,
and 1991:

li=jzi/iz 1980—1991 .

Regression analysis was used for the estimation of the relationship
of the crown class and the growth indices. Spruce and pine were

analysed separately.
The distance between the nearest dominant trees (max. five) and the

test tree within a radius of 6 m was measured. The competition effect

was studied using the following competition index: _

I=1000[(1/D)/n],

where D is the distance and n is the number of neighbouring trees.



10

The radial growth value for 1983—1991 and the relative radial growth
(growth value divided by the radius of the tree) were subjected to

regression analysis against the distance index.

Results and Discussion

No correlation was observed between the radial growth for 1983—

1991 and the distance index. So the neighbour effect on radial growth
was absent in our case. We did not find any correlation between the

Kraft growth class of a tree and its radial growth rate, either. It can

be concluded that the main social conditions of trees had no effect on

their radial increment. This is plausible considering that old stapds were

monitored, where competition for better conditions has already been

completed. ;
Statistically significant correlations between the crown class and the

annual radial growth rate were revealedin superdominant (growth
class 1) and codominant (growth class II) trees. The radial growth
rate was determined up to 20% by the crown condition. In pine stands
the radial growth index was determined up to 10% by the crown class.
No correlation was revealed for spruce stands. The strongest correla-
tions were found for 1990, which is the year with the most favourable
climatic conditions throughout the whole period studied (Table).

No correlation between the crown class and the annual radial growth
occurred in the case of dominant trees (growth class III). Trees of this
class are subjected to more influences than those in classes I and II
and therefore the effect of their crown damage is very weak. According
to Bauch et al. (1988) trees in classes, I and II are more strongly

l cc 1988 | cc 1989 | сс 1990 | cc 1991

; | A. Kraft class I

jz 1988 r=—0.27 — г==—0.41 —

`

Р<0.05 Р<<0.001

jz 1989 — r=—0.23 r=—0237 —

P<0.06 P <0.001

jz 1990 —
— r=—030 — —

P<0.01

jz 1991 — — r=—~0.26 —

.

P<0.05 _

B. Kraft class II |

jz 1988 г= — 0.25 — r=-—0.18 —

Р < 0.05. Р<0.001

jz 1989 — г== —0.40 — —

| P<0.01

jz 1990 — —
— r==—0.39

P<0.01

jz 1991 —

— — re=—0.44

P<0.001

Correlation between radial growth (jz) and crown class (cc)
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influenced by climate and other environmental conditions than those of
class 111. It can be concluded that the trees of these two classes are

more exposed to airborne pollutants, hence their defoliation is mainly
related to the effect of air pollution.

The radial increment was generally related to the crown class of
the same year. In a few cases the radial increment had a correlation
with the crown class of the next year, but not vice versa (i.e. the crown class

was not correlated with the next year’s radial increment). This confirms
the supposition of Kramer (1986), Schweingruber (1985), and Ploch-
mann (1984) that damage in the year of the survey is related to the
increment of the previous year, so a time lag is possible (one year in

our case). |
The connection between the inhibition of inerement and the extent

of needle loss is different for Norway spruce and Scotch pine. The most
common form of defoliation in Norway spruce is needle loss throughout
the crown from the inside towards the outside, i.e. the trees drop older
needles prematurely. In normal ecological conditions the needle age in

spruce is usually up to ten years; the needles of the last three years
form a photosynthetically important part, their mass being about 50%
of the total needle mass. In Scotch pine, however, the needle age is up
to four years (usually three years), the main needle mass belonging
to two first sets; thus, the loss of needlesin one annual set may cause

decisive changes in growth trends. On the other hand, pine has no

ability to form additional or adventive shootslike spruce, i.e. the ability
to compensate for needle loss to a considerable extent. This accounts
for the better <correlation between radial increment and the extent of

needle loss for pine as compared to spruce.
The radial growth index showed in general an increasing trend in

1988—1991 (Fig. 1). The mean value of the radial growth index was

above 1 for this period except in the case of stands on Vigala and
Putkaste plots. This increase may be connected with very favourable
weather conditions and/or additional nutrient supply due to increasing
air pollution, especially nitrogen saturation as also suggested by Aber
et al. (1989). At the same time the crown state became generally worse

(Fig. 3). Diminished radial growth has been found to accompany
defoliation and to occur in conifers when needle loss exceeds 60%
(classified as severe damage, crown damage class III) (Fig. 2). This

finding is also supported by Bauch et al. (1988).

Fig. 1, Radial growth indices for 1988—1991
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Fig. 1 continued.
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Fig. 1 continued.



Fig. 2, Distribution of growth indices in crown classes
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Two stands (Vigala plot and Putkaste plot) are at present character-
ized by growth reduction due to extremely favourable growth conditions

(high percentage of soil humus and good drainage), which prolonged
the juvenile period in the growth curve; now these stands are passing
over to an older stage and so their radial growth has a decreasing trend.

One has to bear in mind, however, that the correlation between the

appearance of a tree and its health has not always been proved. There

are cases when trees which look still vigorous show a marked decrease
of volume growth. On the other hand, some trees which have lost a

considerable amount of needles continue producing normal annual rings.
It is therefore very risky to use such surveys for the estimation of the

possible reduction of volume growth, because they do not allow the

prognostication of either the future development of volume growth or

the speed and further development of the health of forests and the
volume of dead wood tobe harvested in the future.

Conclusions

Social conditions of trees like the Kraft growth class and the
influence of neighbouring trees had no effect on radial growth.

Statistically significant correlation between defoliation rate and
radial growth was found for Kraft growth classes I and П. Radial
growth has generally had an increasing trend in recent years; decreasing
growth is moretypical of pine starting from the 3rd crown damage class.

Fig. 3. Percentage of spruces and pines in crown classes o—l and 2—4.
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The correlation between radial growth and the extent of needle loss
is different for Scotch pine and Norway spruce due to their different
needle age and ability to compensate for needle loss. -

Further research is needed to evaluate injuries caused to forest
health and productivity by air pollution. However, because of widespread
air pollution and forest damage it is becoming increasingly more dif-
ficult to find comparable stands.
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