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APPLICATION OF THE METHOD OF ITERATIVE MOVING

AVERAGE FOR DETECTING BIRDS’ MIGRATION WAVES

Abstract. The total number of birds migrating through an observation point at a given
time depends both on endogenous programme of birds and current environmental

conditions. For investigating bird migration it is important tobe able to exclude the

influence of environmental conditions as a random factor. In the present paper a new

statistical method for smoothing out random fluctuations from curves depicting the

migration dynamics of birds is presented. The method is applied to data about the

spring migration of the long-tailed duck and the autumn migration of the common

scoter.
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Introduction

The migration dynamics (MD) of a given bird species describes the

intensity of its passage through certain observation point(s) in a certain

period. MD can be considered as the result of birds’ endogenous pro-
gramme under the permanent control of environmental conditions. As
there exist both regular (alternation of seasons) and irregular phe-
nomena (current weather) in the environment, the corresponding com-

ponents in MD of birds can be suggested. Thus, any MD can be ob-
served as involving the seasonal component (SC) describing the mean

intensity of migration during a given period and the random component
(RC) representing deviations from SC.

Distinguishing SC in MD means smoothing out RC from it. Different
techniques have been used for this purpose but the methods used most

frequently are the summing up of the census results of single days
over longer periods of time, e.g., pentads (e.g., Jogi, 1970a; Hjort, 1976)
or decades (e.g., Hilden, 1976), and, sometimes, taking the average data

о many years by dates (e.g., Hilden, 1976; Baumanis, 1990) before it.

Smoothing out RC canbe achieved also by means of an approximation
with suitable functions. For example, Alerstam (1978) used the poly-
nomes of the fifth and seventh degree for this purpose. Keskpaik used

the cumulative curves of the migration flow to describe migration as a

transition process. A special technique (Кескпайк, 1989) enabled him
to divide MD into three phases. Zalakevicius (1990) attempted to

approximate cumulative curves with a suitable function.
The described methods of smoothing leave several problems unsolv-

ed. Is the summing up of the total number of migrating birds by 5-
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or 10-day periods well founded or should we use periods of another
duration? How does our choice depend on the amount of data? How

can one be sure that the type and degree of the polynomes applied
for approximation describe as much SC and as little RC as possible? Is

the transition process under consideration unimodal or does it involve two

(e.g., in different endogenous programmes for males and females) or more

processes each with its own peak and it would therefore be better to

describe them separately? These questions can arise in smoothing data
with those methods. In the present paper a new method based on the
iterative moving average is suggested for smoothing RC out of MD.

Definition of the Problem

Let us suppose that the migration of a certain bird species at a

certain observation point (OP) and season is observed during the whole

migration cycle (MC). This means that the observation period lasts
from the beginning of the migration to its end without interruptions.
Also, we suppose that optimum observation times, location of the
observation point with respect to the migration route, and counting
methods have been selected.

Since the expression of the whole duration of MC is too approximate
due to difficulties in observing the first and the last migrating individual,
it is better to use, instead, the period between quantiles. In this paper
the quantiles of 2.5% and 97.5% have been used. So the period T®

between the quantiles involves 95% of the passage.
Observing a set of MC we get i observations of the number of birds

NSR passing OP at a given date /. We are interested in transforming
NSR into NS so that RC occurring in NSR would disappear with a great
probability (95%), while SC would remain.

The following line of reasoning was used. Let us suppose that a

single bird migrates over OP at a certain date £; fixed by its endo-

genous programme. However, current signals from environmental con-

ditions may cause its migration earlier (e.g., due to the social effect

of the specimens whose endogenous programme is timed earlier, or

the existence of a cyclone moving in the opposite direction with respect
to the direction of migration) or later (unsuitable weather conditions

in departure areas). So, if the bird does not pass OP at «, it will do

it at -i or fi4l; if not, then at f;_2 Or fızz etc. As it 15 impossible Ю

predict how many out of the total number of birds NSR passing ОР оп

a certain date Z; are “early,” “late,” or “on time,” the only feasible way
to solve the problem is to redivide the proportions of birds in both di-
rections on the time axis. This is possible using the method of the

moving average, which has proved successful in several closely related

problems (Remm, 1987).

Method of Smoothing .

The method of the moving average can lead to several different
solutions depending on the averaging area, the step interval, and the
model of calculating averaging weights. In our case, it is reasonable to
use always the shortest possible average area, three days, which ensures

the highest sensitivity of smoothing. Then the step interval has tobe
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one day and this with the period of migration 79 will, in turn, de-
termine also the number of steps j. Here different models of calculating
averaging weights Q;; provide quite similar results. The author found
the quadratic model

Qij=l— (t; — t;)%/22

tobe the most suitable. The weighted averages were calculated accord-

ing to the formula

N

2

o
(QiiNSR)

2Oi

If used only once the variant of the moving average described trans-
forms MD only to a small extent. However, if the same procedure is

applied repeatedly, its “power” will steadily increase and we can

continue until we get a unimodal curve. Actually, we are interested in

finding out the optimum number of iterations n. It depends on two
factors: (1) the number of MC (the more MC have been observed, the
smaller n will be), and (2) the duration of MC (the longer the average
duration of MC, the greater n will be).

Our problem сап be formulated as follows: how many iterations
does one need in any number of observation cycles of any duration to

argue, at 959 significance level, that RC has been smoothed out of
MD? To solve the problem a statistical experiment was carried out.

Statistical Experiment |

Suppose that endogenous programmes in a certain set of birds (e.g.,
adult males of the population) are very similar, causing the initiation of

migration in a certain period of the year so that the departure times
of each single bird are distributed normally with the mean date ¢ and
variance s 2 Then the theoretical dynamics of the migration flow N 8 can
be determined by the formula

|NB~N(%, s?),

where s% can be expressed by means of T9:

Sz=(‘§>—<TT%§6‘)|
Suppose that all values of the theoretical MD N® are distorted by

some random influences. To get a dynamics as similar as possible with
the one obtained from field observations, random influences have tobe

exponential. Doing so, the theoretical dynamics of the migration N?R
can be calculated as

NSR=—ln(Rnd)NB, .

where Rnd is a random number between 0 and 1.

As we stated previously, the number of iterations in smoothing data
with the moving average depends on two factors: (1) the number of

observed MC / and (2) the duration of MC T®, Proceeding from

this, theoretical data combinations from four values of 7% and six values
of I were simulated, each 100 times, i.e., 24100 theoretical MC.

° (4)

(1)

(2)

(3)

(5)
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Further, the method of the iterative moving average wäs applied
for all MC. As it is known that the curve based on the data obtained
from formulas (3), (4), and (5 )must have only one peak, it is reason-

able to smooth the data until they yield only one peak. As a result, one

obtains 24X 100 values of n and, using negative binomial or binomial
distributions, the corresponding theoretical values of n at 95% signi-
ficance level n%, were estimated by all 24 distribution curves.

If the results (Table) are transformed by taking a natural logarithm
from both n% and /, then at constant T® a linear relationship seems

to occur between In(n®) and In(/) (Fig. 1). The straight lines obtained

by means of approximating the data at four different values of 7T® with

the method of least squares have approximately the same slope (mean
—0.48) with an almost equal distance between them (mean 1.15).

Fig. 1. Theoretical values of the optimum number of iterations at 959 significance
level n® (dots) relative to the number of observed MC [ in four different durations

о! MC T%. Logarithmic values of n% and I have been used. Straight lines have been

й
fitted by least squares.

р

pe I————————————————1 l 2 l 4 l 8 l 16 l 32

10 4.65 3.40 2.30 1.54 1.00 0.96 +

20 14.11 10.24 7.19 5.29 3.57 2.77

40 44.12 32.20 23.39 14.35 12.04 8.15

80 135.28 110.30 68.76 65.00 50.00 25.46

Theoretical values of the optimum number of iterations at 95% significance level n%

relative to the number of observed MC I and the duration of MC T® obtained

from the statistical experiment
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Considering also that the line corresponding to T®=lo intersects the

y-axis at the point y==l.so, n% can be calculated as

95

In (n®) =—0.48 In (7) +1.541.15 logz—]l;()—-.,
which can be approximated as

п5 — ||;-—-—-Т9
і

53

10 V1
+l]]' ;

Examples

1. The spring migration of the long-tailed duck (Clangula hyemalis)

The field work was carried out in 1984—1990, I—3l May, each year
except 1985 at the Puhtu Ornithological Station at the Suurväin Strait
on the western coast of Estonia. Both visual (Veroman and Jõgi, 1961;
Jõgi, 1970b; Azxep and Kecknaüxk, in press) and simultaneous visual
and radar studies (Jakoby, 1983) have shown that it is the best place
for observing the departure of arctic ducks from the staging place in
the Gulf of Riga to the breeding areas.

Using formula (7) the value of n%=6 can be calculated considering
that /=7 and T%=l9. Forcalculating the latter one has to make sure

that the data of all the years taken together are sorted by dates.
The result obtained after smoothing with the moving average with six
iterations (Fig. 2) shows that the spring migration of the long-tailed
duck can be regarded unimodal. The smoothed curve seems very close
to that of the normal distribution, except a small hump on its left side.
It is also possible to find a reasonable explanation of the formation of the

hump. Here mainly two methods can be used: (1) analysis of the data
of different years and different combinations of years separately and

comparison of the results, or (2) shift of the initial data on the time
axis to get a better {it of different years.

Considering that the spring passage of the long-tailed duck is a

short-term process, the initiation and course of which is strongly af-
fected by the lingering of winter conditions (especially ice cover) in
their starting areas (Amep and Kecknaiik, in press), the second method

seems to be suitable in our example. Here a certain quantile (in this

example the median) of each MD is supposed to correlate with the phe-
nological phase of the corresponding year; further, MD has to be

analysed relative to the quantile. This approach ensures a better fit of
the MD of different years and more exact smoothed curve. Fig. 3 shows
that the curve has no hump anymore and that it has also lost its

normality: the migration wave is more abrupt at its beginning. In the

B-part of the figure the same curve is compared with seven curves each
obtained after smoothing the data of one year separately. The results

are similar: only one curve has two very closely situated peaks. It shows
that even one observation cycle can give quite exact results.

(6)

(7)
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Fig. 2. The spring migration of the long-tailed duck (Clangula hyemalis) at Puhtu,
West Estonia, during a 7-year period. A: The total number of birds observed per day
(dots) and the corresponding curve obtained by smoothing with the iterative moving

average. B: the same smoothed curve as in A (solid line) and the corresponding
normal distribution (dotted line).
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Fig. 3. The same data as in Fig. 2, with the yearly migration curves shifted so that

their medians coincide. A: The total number of birds per day (dots) and the correspond-

ing smoothed curve. B: The resultant curve (thick line) compared with seven curves

each obtained by smoothing the data of one year separately.
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Fig. 4. The autumn migration of the common scoter (Melanitta nigra) at Viinistu,
North Estonia. A: The total number of birds per day observed (dots) and the smoothed

curve with two maxima. В: Time parameters of migration found from the cumulative

curve. Gi — generalized migration of males, G2 — generalized migration of females

and brood, L!,..L® — initial, intermediate, and final time lags. M! and M? —median

days of migration; a! and a? —migration speeds (slopes of tangent).
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2. The autumn migration of the common scoter (Melanitta nigra)

The best sites for observing the autumn migration of waterbirds

through Estonia are some headlands on the southern coast of the Gulf
of Finland (Jogi, 1970b). A most suitable among them is Viinistu,
where observations were carried out in nine years in the period 1960—
1985. However, as all single fieldwork periods (usually lasting about
a month) are too short for observing the whole MC of the common scoter

(while it is covered by all MC together) some additional problems are

tobe solved.
Theautumn passage can last up to six months ог even longer in

some bird species. Thus, it may be difficult to organize observations

covering the whole MC. The only way is to use shorter periods distribut-
ed among different years. The longer these periods are, the smaller
the error in the description of the whole MD after summing up single
observation periods. While summing up all the data of 9-year ob-
servations on the common scoter, 2—5 or at least 2 observations were

found per any day within MC, which makes it possible to take I=2.

Considering that 79=82 (calculated as usual), one has to perform
smoothing by taking n%=llo. The resultant curve (Fig. 4) has two

peaks, the first representing the moult migration of males and the
second that of females and the brood.

These two migrätion peaks coincide more or less, which makes it dif-
ficult to separate them from each other. There exist several ways to do
it. The best one is to use additional information (if it exists) to divide
the initial. data into groups and repeat smoothing in each group
separately. In our example, data about the sex and age that, we think,
serve as a basis for the division of migration into two groups, have
not been collected regularly and therefore we cannot use this method.
Another way is to intersect the curve between the adjacent peaks at

the point that is least influenced by either peak. The minimum point
between the two peaks is the very point we look for. So, in our example
the most neutral date between the two migration waves of the common

scoter is Aug. 25 (Fig. 4B). By means of the procedure, however, we

cut off the final part of the first and the initial part of the second peak.
These parts can be extrapolated in case the distribution of both

migration waves is known, but this possibility will not be discussed here.
The method of smoothing treated gives us a set of maxima and

minima of MD that can be useful for comparing different field ob-
servations. However, it is also important to apply additional methods
to describe MD. A good idea is to use the cumulative curves of MD

(Kecknaiik, 1989) (Fig. 4), which enables to estimate the median of the

migration wave (M!, M2?) and (using the slope of tangent) the speed of

migration (a!, а?) ю it. By extrapolating this speed to the whole

migration wave (Fig. 4B) the periods of generalized migration (G, G?)
situated between the periods of time lags (L!...L?%) can be calculated.
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