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ABSTRACT  
The most extensive sea-level event of the Early Ordovician is known as the Evae transgression. 
During the highstand of this event, the conodont index species Oepikodus evae reached its 
acme and often coincided with the peak in conodont generic diversity. The main objective of this 
study is to statistically evaluate the degree of similarity in conodont species composition be -
tween the Argentine Precordillera, Laurentia, Baltica, Kazakhstania, South China, and Australia 
at that time. Cluster analysis shows two main faunal groups moderately to poorly differentiated, 
indicating that some paleogeographic barriers may not have decreased during the Evae trans -
gression. On the other hand, a paleolatitudinal control over the distribution of species is 
suspected, considering the occurrence of a higher number of species dwelling in mid-low lati -
tudes than in mid-latitudes. This suggests that this event could have been of a lesser magnitude 
or duration than previously claimed.  

Introduction 
The Evae transgression is considered the most extensive of the Early Ordovician 
(Bagnoli 1994). This event was explicitly reported in some sections of Laurentia, 
Baltica, South China, and the Argentine Precordillera (Stouge and Bagnoli 1988; 
Barnes 2004; Wu et al. 2010a, 2010b; Mango and Albanesi 2021). The index species 
Oepikodus evae reached its acme during the highstand of that transgression (Bagnoli 
1994). Moreover, the first peak of conodont generic diversity has been recorded 
in Baltica (Nielsen 2004; Männik and Viira 2012) and South China (Wu et al. 2010a, 
2010b) at that time. During the highest sea-level rises, shelf expansion leads to open-
water species colonizing these environments, which oc casionally drove some shelf 
species to extinction (Fortey 1984; Lehnert et al. 2013). At the same time, the ap -
pearance of new species by adaptive radiation often coincides with major trans- 
gressive events (Bagnoli 1994; Nielsen 2004). Another faunal re sponse is the more 
fluid exchange of species at a global scale because the paleo geo graphic barriers 
tend to decrease, resulting in a provincial breakdown (Fortey 1984; Albanesi and 
Bergström 2010). The main objective of this study is to statistically evaluate the 
degree of similarity in conodont species composition between the Argentine 
Precordillera, Laurentia, Baltica, Kazakhstania, South China, and Australia during 
the highstand of the Evae transgression.  

Materials and methods 
The highstand of the Evae transgression is defined here as the time interval when the 
conodont index species Oepikodus evae reached its acme, often coinciding with the 
peak in conodont generic diversity (Bagnoli 1994; Wu et al. 2010a, 2010b; Männik 
and Viira 2012; Mango and Albanesi 2021). Studies that do not fit this definition were 
excluded. This resulted in some plates, such as North China (e.g. An et al. 1983), 
Siberia (e.g., Sennikov et al. 2015) and intracratonic basins of Australia (e.g. 
Stewart and Nicoll 2003) not being represented in the analysis. A total of 35 studies 
from 28 sections worldwide were selected, located in the Argentine Precordillera, 
Newfoundland, Baltoscandia, South China, Kazakhstan, and Australia (Fig. 2A and 
references therein). The degree of similarity in conodont species composition was 
assessed by cluster analysis using the Jaccard index (Ji), which has a range from 0 
(no similarity) to 1 (maximum similarity) (Jaccard 1912). Based on the similarity 
matrix generated, the degree of similiarity between the different paleocontinents is 
defined here as low or poor (Ji 0 to 0.49), intermediate or moderate (Ji 0.50 to 0.70) 
or high (Ji 0.71 to 1). The analysis was performed with PAST 4.10 software (Hammer 
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et al. 2001). Undetermined and rede posited conodont elements 
were excluded and some species were synonymized. 

Results and discussion 
Cluster analysis shows two main faunal groups moderately 
to poorly differentiated (Ji 0.22 to 0.50) during the Evae trans -
gression (Fig. 2B). The first group includes Australia and 
Kazakhstania with a relatively low faunal similarity (Ji 0.22), 
which indicates a limited species interchange between these 
relatively nearby areas at that time. Based on the paleo -
latitudinal location of Australia and Kazakhstania (Fig. 1), we 

consider that the main barriers that might have restricted the 
species migration were temperature (convergence of cold-
warm waters) and/or paleolatitudinal constraints. The lower 
number of species found in Australia and Kazakhstania 
(Fig. 2A) indicates unfavorable environmental conditions 
for the survival of various species during the Evae transgres -
sion. In addition, the presence of a few endemic species in 
Kazakhstania suggests a certain degree of isolation of this 
region during that sea-level rise. However, these results could 
be affected by sampling bias because Australia is represented 
only by the Lachlan Orogen section and Kazakhstania by the 
Akzhal suite and Barite quarry sections in the present stat -
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Fig. 1.  Paleogeographic 
map showing the 
possible migration 
shortcut routes and the 
number of shared 
species between the 
Argentine Precordillera, 
Laurentia, Baltica, 
Kazakhstania, South 
China, and Australia 
during the Evae 
transgression (modified 
after Scotese 2014).  

Fig. 2A – table of data sets 
used in this study;  
2B – dendrogram from the 
cluster analysis based on 
the Jaccard index showing 
the similarity in conodont 
species of the lower 
Oepikodus evae interval 
between the Argentine 
Precordillera, Laurentia, 
Baltica, Kazakhstania,  
South China, and Australia. 
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istical analysis (Fig. 2A). Moreover, these sections represent 
siliciclastic depositional environments, which are poorer for 
the preservation of conodonts than carbonate-dominated set -
tings (Zhen et al. 2021).  

The second group consists of two subgroups, one ex -
clusively with South China, and another formed by Laurentia, 
the Argentine Precordillera and Baltica. South China shares 
a relatively low proportion of species with Laurentia (Ji 0.19) 
and the Argentine Precordillera (Ji 0.26), probably due to the 
existence of a paleolatitudinal control over the distribution of 
species during the Evae transgression. In addition, the land 
areas of Kazakhstania could have functioned as barriers to 
the dispersal of species from South China to other paleo -
continents. A few species are shared exclusively between 
South China and Australia, showing some exchange between 
those nearby plates. Moreover, some species were reported 
exclusively in South China, supporting the idea of a certain 
degree of isolation of this plate at that time. Although South 
China is represented by two sections (Fig. 2A), only the 
Huanghuachang section was heavily sampled as a candidate 
section for the GSSP of the Dapingian Stage (e.g. Wang et al. 
2009). Consequently, it can be assumed that the results are 
not significantly affected by sampling bias, and probably 
most of the species that occurred in South China at that time 
were recorded. Laurentia and the Argentine Precordillera 
share a higher proportion of species (Ji 0.50), probably due 
to their close paleogeographic proximity and similar paleo -
latitudinal position. This probably allowed a more significant 
exchange of species than with other paleocontinents (Fig. 1). 
Baltica has less faunal similarity with Laurentia (Ji 0.29) and 
the Argentine Precordillera (Ji 0.35), perhaps because its 
location at mid-high latitudes resulted in latitudinal and 
oceanic constraints, which limited the migration of species 
there. On the other hand, Laurentia and the Argentine Pre -
cordillera show the highest species richness (Fig. 2A), 
indicating that these areas were the most suitable for the 
survival of most species under the prevailing conditions. 
This suggests a lati tudinal gradient, with a higher number of 
species dwelling in mid-low latitudes than in mid-latitudes. 
Although some de gree of exchange between relatively close 
paleocontinents was identified, it would be less than expected 
for an event of major magnitude or duration (Fortey 1984). 
In addition, Kazakhstania, Australia and South China were 
somewhat isolated, indicating that many paleogeographic 
barriers may not have decreased during the Evae trans -
gression (Albanesi and Bergström 2010), contrary to what 
would be expected for a greater transgression. 

Conclusions 
In the present study, a limited exchange of species between 
most of the paleocontinents was identified indicating that 
some barriers may not have been decreased at that time. On 
the other hand, a possible paleolatitudinal control over the 
distribution of species during the Evae transgression is sus -
pected. This suggests that this event could have been of a 
lesser magnitude or dur ation than previously claimed. Never -
theless, these inter pre tations are based exclusively on the 

statistical distribution of species in selected sections from the 
Argentine Precordillera, Baltica, Laurentia, South China, 
Kazakhstania and Australia, which fit the definition of the 
Evae trans gres sion considered here. Additionally, the silici -
clastic depositional environments and low representation of 
some sections could have biased the results.  
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