ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 26 ХИМИЯ * ГЕОЛОГИЯ. 1977, № 4

УДК 661.185; 532.612; 532.695

С. ФАЙНГОЛЬД, Татьяна ЛЕСМЕНТ, Н. МАСПАНОВ, Е. ГОРДЕЕВА

ТРИЭТАНОЛАМИНОВЫЕ СОЛИ ВТОРИЧНЫХ АЛКИЛСУЛЬФОЭФИРОВ И ИХ ПОВЕРХНОСТНО-АКТИВНЫЕ СВОЙСТВА

Все повышающиеся экологические требования к широко используемым синтетическим поверхностно-активным веществам (ПАВ) ставят перед исследователями задачу синтезировать такие ПАВ, которые, обладая удовлетворительными поверхностно-активными свойствами, в то же время были бы мало токсичными и легко биоразлагаемыми, не вызывали загрязнения почвы и водоемов, имели слабое дерматологическое действие.

Ивестно, что триэтаноламиновая соль первичного лаурилсульфата является главной составной частью многих моющих и пеномоющих средств, например, шампуней и зубных паст $[^{1-7}]$. В Советском Союзе используется главным образом импортная триэтаноламиновая соль лаурилсульфата, которая представляет собой дефицитный продукт.

Промышленностью освоен процесс получения вторичных алкилсуль-

фатов натрия на основе олефиновых углеводородов.

Способ получения вторичных алкильсульфатов триэтаноламина в литературе не описан, и цель настоящей работы заключалась в проверке возможности получения триэтаноламиновых солей вторичных алкилсульфоэфиров, в разработке технологии этого процесса, определении физико-химических свойств получающихся продуктов и возможности их применения.

В настоящей работе использовали фракцию олефинового сырья, получаемую путем крекинга твердых парафинов и идущую на производство пенообразователя ПО-ЗА. Фракция содержала 82% α-олефинов нормального строения, причем из них 39% составляли олефины C₉—C₁₀ и

43% — олефины С₁₁—С₁₃.

Сульфатирование проводили моногидратом серной кислоты, который добавляли постепенно при интенсивном перемешивании и охлаждении, при этом следили, чтобы температура не превышала 20°С. Затем сульфоэфиры нейтрализовали 50%-ным водным раствором триэтаноламина

до рН 7,5—8.

После добавления изопропилового спирта проходило расслоение реакционной массы на два слоя. Верхний представлял собой несульфатированные соединения и удалялся. Нижний слой использовали для экстракции растворенных несульфатированных соединений и выпаривания изопропилового спирта и части воды.

Таблица 1

икиойски буми

0	HON (ты опытов по	FORN					
	иные	n 20 n D	T T	1,5530	1,4549	1,4563	1,4543	1,4540
Условия получения триэтаноламиновой соли вторичных алкилсульфатов (для сульфатирования во всех опытах использовалось 100 фракции и 54 z серной кислоты $(d=1,835)$)	льфатирова	d 4 4	en lo	0,836	0,851	0,847	0,842	0,848
	Отделенные несульфатированные	Бромное	ansa Inde	20	12	13	18	91
		к фрак-	48,6	45,4	51	57	36	51
	Готовый продукт	Содержа- ние не- сульфа- тиров. веществ,	1,2	1,3	2,5	3,3	4,9	8,0
		Выход активного вещества, г	101	HOO	106	124	123	119,2
		Содержа- ние актив- ного ве- щества, %	41	23,7	31	21,4	39,5	44,5
		Количе-	246,7	466,5	342	580,3	313,6	8'692
	Количе-	70	30	ing H	E E	Hou	30	
триэтанола	тизация ламином	Количе-	250	249,3	250	492	176	176
получения	Нейтрализация триэтаноламином	Конц. раствора, %	20	50	50	25	75	75
Условия	HPHE SHIRE	Номер о пыта	HOLES OF STREET	2	3	4	2	9

В табл. 1 приведены результаты опытов по получению триэтаноламиновых солей вторичных алкилсульфатов. В опыте 1 (см. табл. 1) количество изопропилового спирта (70% от количества реакционной массы) было такое же, как принято в технологии получения натриевых солей вторичных алкилсульфоэфиров. Как видно из сравнения опытов 1, 2 и 3 (см. табл. 1), количество изопропилового спирта может быть уменьшено вдвое, но вообще исключение его из технологического процесса приводит к повышению содержания несульфатированных соединений в конечном продукте. Еще яснее видно это из опытов 5 и 6, где нейтрализация проводилась 75%-ным раствором триэтаноламина.

По этой же методике путем нейтрализации 50%-ным раствором триэтаноламина кислых сульфоэфиров, получающихся при производстве вторичных алкилсульфатов, на сланцехимическом комбинате «Кивиыли»

получен продукт, условно названный Эстонолом-2.

Триэтаноламиновые соли вторичных алкилсульфоэфиров для определения их физико-химических свойств были выделены из Эстонола-2 путем высушивания и осаждения сульфата триэтаноламина из безводного ацетона.

Поверхностно-активные свойства этих соединений сравнивали со свойствами триэтаноламиновой соли первичного лаурилсульфата производства химкомбината им. Батурина.

Поверхностно-активные свойства Эстонола-2

Для исследования и сравнения поверхностно-активных свойств были взяты:

Эстонол-2 (технический продукт, содержащий активного вещества 49,5, несульфатированных соединений 1,6, сернокислого триэтаноламина 22,4 и свободного триэтаноламина 0,8%),

триэтаноламиновая соль вторичных алкилсульфоэфиров (100%-ное активное вещество, выделенное из Эстонола-2),

триэтаноламиновая соль первичного лаурилсульфата (технический продукт, содержащий 57% активного вещества),

триэтаноламиновая соль первичного лаурилсульфоэфира (100%-ное активное вещество, выделенное из технического продукта).

Исследовались следующие свойства: поверхностное натяжение — статическое и динамическое, критическая концентрация мицеллообразования (KKM_1 и KKM_2), пенообразование, моющая способность продуктов и моющих средств на их основе. Все растворы готовились на дистиллированной, бидистиллированной и стандартно жесткой воде (5,35 мг-экв/л при соотношении катионов кальция и магния 2:1).

Поверхностное натяжение измерялось сталагмометрическим методом при 50° только для растворов, выделенных из продуктов активных веществ в бидистиллированной воде. Скорость каплеобразования для статического режима измерения составляла 2 мин, для динамического — 2 сек. Как видно из рис. 1 и 2, кривые изотерм поверхностного натяжения для исследуемых веществ при небольших концентрациях их близко расположены друг к другу. При более высоких концентрациях, приближающихся к критической концентрации мицеллообразования, изотерма поверхностного натяжения активного вещества Эстонола-2 расположена ниже, и следовательно, Эстонол-2 обладает большей поверхностной активностью, чем триэтаноламиновая сель первичного лаурилсульфата.

Критическая концентрация мицеллообразования определена по излому соответствующих изотерм поверхностного натяжения для исследуе-

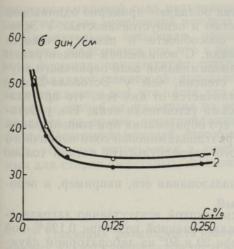


Рис. 1. Статическое поверхностное натяжение триэтаноламиновой соли лаурилсульфата (1) и Эстонола-2 (2) при 50 °С.

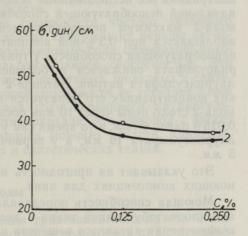


Рис. 2. Динамическое поверхностное натяжение триэтаноламиновой соли лаурилсульфата (1) и Эстонола-2 (2) при 50 °С.

мых веществ, построенных в полулогарифмических координатах (табл.

Из табл. 2 видно, что значения ККМ1 и ККМ2 Эстонола-2 близки к соответствующим значениям триэтаноламиновой соли первичного лаурилсульфоэфира.

Пенообразующая способность изучаемых веществ определялась при 50° в воде стандартной жесткости по методике Росс-Майлса путем замера начальной высоты столба пены (Н₀), высоты столба пены через 5 мин (H_5) и через 10 мин (H_{10}) (табл. 3). Из табл. 3 видно, при высоких кон-

Таблица 2

принические концентрации мицемногоразорания, 70								
Вещество	KKM ₁	KKM ₂						
Триэтаноламиновая соль первичного лаурилсульфоэфира Триэтаноламиновая соль вторичных алкилсульфоэфиров Додецилсульфат натрия	0,053 0,05 0,020	0,160 0,130 0,210						

Таблица 3 Пенообразующая способность

	Высота пены, мм								
Концентрация, вес. %	Эстонол-2			Додецилсульфат натрия			ТЭА-соль первичного лаурилсульфата		
123	H ₀	H ₅	H ₁₀	H ₀	H ₅	H ₁₀	H ₀	H ₅	H ₁₀
0,5000	182	156	149	185	163	157	181	156	153
0,3000	185	164	153	184	158	142	156	130	124
0,1250	164	145	145	184	157	142	142	125	120
0,0625	137	121	113	179	153	77	104	97	52
0.0312	116	99	95	175	143	35	81	44	31
0,0156	84	69	65	142	85	5	65	25	19

центрациях все исследованные вещества обладают примерно одинаковой начальной пенообразующей способностью и пеноустойчивостью. У Эстонола-2 максимум пенообразующей способности и пеноустойчивости наблюдается при 0,3%-ной концентрации. С понижением концентрации пенообразующая способность у триэтаноламиновой соли первичного лаурилсульфата снижается в большей степени, чем у Эстонола-2 и у лаурилсульфата натрия. Эстонол-2 отличается от них тем, что при низких концентрациях его образуется весьма устойчивая пена. Так у Эстонола-2 столб пены через 10 мин после его образования при концентрации 0,015 6 равен 65 мм, в то время как у триэтаноламиновой соли первичного лаурилсульфата 19 мм, а у первичного лаурилсульфата натрия только 5 мм.

Это указывает на пригодность использования его, например, в пеномоющих композициях для ванн.

Моющая способность определялась стиркой искусственно загрязненной хлопчатобумажной ткани в дистиллированной воде при 0,125%-ной концентрации активного вещества и при 20 и 50° на лабораторном лаундерометре. Расчеты произведены с использованием формулы Кубелки-Мунка.

На основе исследуемых веществ и эталонного лаурилсульфата натрия приготовлены пробы композиций моющих средств для стирки шерстяных, шелковых и синтетических тканей по стандартной рецептуре пастообразных средств, содержащих 35% активного вещества, 5% моноалкиламидов и 10% триполифосфата натрия и жидких моющих средств, которые в свою очередь содержали заменяемого активного вещества 17, неионогенных 7 и триполифосфата калия и натрия 7%.

Как видно из табл. 4, Эстонол-2 не уступает по моющей способности

Исследуемое средство	При 20 °C	При 50 °C
Лаурилсульфат натрия	100	100
Триэтаноламиновая соль лаурилсульфата	73	93,3
Эстонол-2	71,5	93,7
Триэтаноламиновая соль вторичных алкильсульфоэфиров	60,7	52,7
Паста на основе лаурилсульфата натрия для стирки шерстяных, шелковых и синтетических тканей	112	140
Паста на основе триэтаноламиновой соли первичного лаурил- сульфата для стирки шерстяных, шелковых и синтетических тканей	92,6	122
Паста на основе Эстонола-2 для стирки шерстяных, шелковых и синтетических тканей	98,5	128
Паста на основе триэтаноламиновой соли вторичных алкил- сульфоэфиров для стирки шерстяных, шелковых и синтетиче- ских тканей	102	123
Паста, выпускаемая отечественной промышленностью для стирки шерстяных, шелковых и синтетических тканей	112	155
Жидкое моющее средство, выпускаемое отечественной промыш- ленностью, для стирки шерстяных, шелковых и синтетических тканей	111	119
Жидкое моющее средство на основе Эстонола-2 для стирки шерстяных, шелковых и синтетических тканей	111	117

триэтаноламиновой соли первичного лаурилсульфата как в чистом виде,

так и в составе композиций моющих средств.

Сравнительно невысокая моющая способность чистого активного вещества объясняется тем, что в препаратах, содержащих меньше активного вещества, присутствуют триэтаноламиновые соли сульфатов, которые обладают некоторой дополнительной моющей способностью. Это подтверждается тем, что паста для стирки шерстяных, шелковых и синтетических тканей на его основе по моющей способности не уступает такой же пасте на основе триэтаноламиновой соли первичного лаурилсульфата. Испытания моющей способности показали, что Эстонол-2 может быть успешно использован в композициях моющих средств, применяемых для стирки шерстяных, шелковых и синтетических тканей.

Выводы

1. Показана возможность получения триэтаноламиновых солей вторичных алкилсульфоэфиров по технологии, используемой для синтезирования натриевых солей. Количество изопропилового спирта при этом может быть уменьшено вдвое, в результате чего увеличивается выход полезных продуктов в 1,2—1,3 раза.

2. Данные о поверхностном натяжении и критической концентрации мицеллообразования свидетельствуют о том, что триэтаноламиновые соли вторичных алкилсульфоэфиров являются полноценными ПАВ.

3. Высокая пенообразующая способность Эстонола-2 позволяет рекомендовать его для применения в композициях шампуней и пеномоющих

средств.

4. Моющая способность Эстонола-2 составляет 60-70% по сравнению с моющей способностью лаурилсульфата натрия. Эстонол-2 может быть использован в композициях жидких и пастообразных моющих средств.

ЛИТЕРАТУРА

- Новые товары бытовой химии. М., 1971, с. 12—13.
 Каталог фирмы «Dow Chemical». 1970, clns. 76/4.
 Soap a Chem. Spec., 47, 113 (1971).

Soap a спеша бысле в прес., 47, 118 (1717).
 Hoвые товары бытовой химин. М., 1971, с. 32.
 Seffen, Öle-Fette-Wachse, 95, S. 543—544 (1969).
 Seffen, Öle-Fette-Wachse, 95, S. 589—592 (1969).
 Новые товары бытовой химин. М., 1971, с. 41.

8. Руководство по методам исследования, технологическому контролю и учету производства в масложировой промышленности. Л., IV, 1963.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 20/VIII 1975

S. FAINGOLD, Tatjana LESMENT, N. MASPANOV, E. GORDEJEVA

SEKUNDAARSETE ALKÜÜLSULFAATIDE TRIETANOOLAMIINI SOOLADE SAAMINE JA NENDE PINDAKTIIVSED OMADUSED

Esitatakse sekundaarsete alküülsulfaatide trietanoolamiini soolade saamise meetod ja nende pindaktiivsed omadused. Katsetest ilmneb, et tegemist on täisväärtuslike pindaktiivsete ainetega, mida on soovitatav kasutada šampoonides, vaht- ja vedelates pesemisvahendites.

S. FAINGOLD, Tatiana LESMENT, N. MASPANOV, E. GORDEYEVA

THE METHOD OF OBTAINING TRIETHANOLAMINE SECONDARY ALKYL SULPHATES AND THEIR SURFACE ACTIVE PROPERTIES

The method of obtaining triethanolamine secondary alkyl sulphates and the deter-

mination of their surface properties are described.

It has been found that triethanolamine secondary alkyl sulphates are good surfactants and they may be recommended for the composition of shampoos and liquid detergents.