ЕЕSTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVI KÖIDE кееміа * Geoloogia. 1967, NR. 4 ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVI ХИМИЯ * ГЕОЛОГИЯ. 1967, № 4

С. РАНГ, О. ЭИЗЕН

РАВНОВЕСНАЯ АДСОРБЦИЯ СМЕСЕЙ *н*-ГЕПТАН-*н*-ГЕПТЕН-1 В ПАРОВОЙ ФАЗЕ НА МОЛЕКУЛЯРНЫХ СИТАХ

Данные о равновесной адсорбции многокомпонентных систем составляют основу при выяснении возможности применения синтетических цеолитов для разделения смесей более сложного состава, в том числе продуктов переработки нефти и твердых ископаемых. Особый интерес представляют данные о равновесной адсорбции двухкомпонентных смесей *н*-алкан-*н*-алкен, являющиеся основой при решении вопросов о возможности применения синтетических цеолитов для выделения *н*-алкенов или их смесей с *н*-алканами.

В настоящее время в литературе имеется относительно мало данных о совместной адсорбции нормальных алканов и алкенов на молекулярных ситах в паровой фазе. В работах [^{1, 2}] изучалось парофазное адсорбционное равновесие системы *н*-гексан-*н*-гексен-1 на цеолитах CaA, CaX и NaX. Было установлено, что цеолиты типа NaX имеют большую адсорбционную емкость относительно гексена-1 по сравнению с другими типами синтетических цеолитов и что коэффициент разделения гексангексеновых смесей на этом цеолите больше. В отличие от цеолита типа CaA адсорбция гексенов-2 или -3 на цеолитах типа NaX не зависит от геометрического строения молекулы.

В литературе не имеется данных о совместной адсорбции паров более высококипящих *н*-алканов и *н*-алкенов, а также мало имеется сведений об изомеризации двойной связи в молекуле алкенов на синтетических цеолитах, т. е. о составе десорбата, выделенного с сит. Подобные данные необходимы для установления оптимальных условий процессов сорбции-десорбции.

В данной работе обсуждаются некоторые основы процесса разделения двухкомпонентных смесей *н*-гептан-*н*-гептен-1 на молекулярных ситах CaA, CaX и NaX.

Экспериментальная часть

Применялись следующие молекулярные сита, полученные с Горьковской опытной базы ВНИИНП: СаА Ц-202-249 (связующее — глуховская глина), СаА Ц-202-623; СаА Ц-202-273 (связующее — 15% портландцемента) СаА-3-Ц-202-570 (с неполимеризующим связующим); СаА-Т (без связующего, партия № 141); СаХ Ц-202-255 и NaX-202-254 (связующее в двух последних — глуховская глина).

Нормальный гексан и н-гептан очищались ректификацией. н-Гексен-1 и гептен-1 синтезировались из аллилбромида и пропил- и бутилбромидов по реакции Гриньяра. Применявшиеся в качестве эталонов *цис-* и *транс-*гептен-2 и *цис-* и *транс-*гептен-3 синтезировались из гептина-2 и гептина-3 путем гидрогенизации с катализатором Линдлера или металлическим натрием в жидком аммиаке с образованием соответственно *цис-* или *транс-*алкена. Полученные соединения очищались методом препаративной газовой хроматографии на колонке с AgNO₃ и триэтиленгликолем или с твином 80.

Чистота исходных соединений и состав смесей определялись методом капиллярной газовой хроматографии на хроматографе Хром-2. Применялась колонка из нержавеющей стали, имеющая длину 45 *м* и диаметр

0,2 мм. В качестве стационарной жидкой фазы служил дибутират триэтиленгликоля. Анализ проводился при комнатной температуре. Газом-носителем служил азот со скоростью 0,6 мл/мин. Число теоретических тарелок колонки при делении потоков 1:200 на входе в колонку составляло 54 000 по *н*-гептану.

Исследование равновесия адсорбции в паровой фазе проводилось в адсорбере, который вместе с приемником изображен на рис. 1. Предварительное активирование цеолитов (фракция 0,25-0,5 мм) протекало 4 ч при температуре 400-450° С. Адсорбер, наполненный предварительно активированными ситами (в количестве 10-12г), нагревался при 400° в токе сухого гелия до постоянного веса. Исследуемая смесь подавалась в адсорбер посредством шприца объемом 10 мл со скоростью 1 капля в секунду. В верхней части адсорбера смесь испарялась, и пары в токе гелия проходили через слой сит. Вещества, прошедшие адсорбер, конденсировались в приемниках при температуре твердой углекислоты. Подачу исследуемой смеси прекращали тогда, когда в приемник собиралась смесь, отвечающая по составу исходной. После этого через адсорбент в течение 30 мин пропускали ток сухого гелия и затем взвешивали адсорбер. Определяли количество адсорбированного вещества.

Рис. 1. Адсорбер (1) и приемник (2) для исследования парофазного равновесия адсорбции.

Результаты проверки описанной методики исследованием равновесия системы *н*-гексан-*н*-гексен-1 на синтетических цеолитах CaA согласовались с ранее опубликованными данными литературы [^{1, 2}].

Для изучения состава адсорбата, последний десорбировали в токе гелия с помощью водяного пара при 100° в течение 0,5—1 часа. Выход десорбата составлял 60—99% от адсорбированных углеводородов.

Обсуждение результатов

На рис. 2 изображены результаты исследования равновесия адсорбции смесей паров *н*-гептан-гептен-1 на синтетических цеолитах CaA, CaX и NaX.

Аналогично смеси гексан-гексен-1 на синтетических цеолитах СаА, СаХ и NaX происходит селективная адсорбция гептена-1 из смеси гептан-гептен-1. Из исходной смеси с содержанием гептена-1 10—30%

можно выделить концентраты гептенов с содержанием 30—80% последних. Наибольшую адсорбционную емкость относительно гептена-1 имеют цеолиты типа NaX, на которых также коэффициент разделения гечтан-гептеновых смесей больше. Так как в первых фракциях рафината олефин отсутствует, представляется возможным выделить *н*-гептан

и гептен-1 в виде отдельных фракций. Для выяснения свойств различных связующих на изомеризацию двойной связи алкенов применялись разные теолиты типа СаА с разсвязующими. личными Среди них наибольшей селективностью характеризуются сита СаА Ц-202-249, с помощью которых из исходной смеси, содержащей 9% гептена-1, получают десорбат, содержащий 59% гептенов, а в случае 45%-ной исходной смеси — 85%-ный концентрат гептенов. Так, содержание гептенов увеличивается в адсорбате от 2 до 6 раз. Относительное содержание гептенов в десорбате уменьшается с ростом исходной концентрации.

На цеолитах СаА

Ц-202-623 (с неполимеризующим связующим) и СаА Ц-202-273 (связующее — портландцемент, которое также считается не полимеризующим) селективная адсорбция гептена-1 меньше, чем на ситах СаА Ц-202-249. На них содержание гептена в адсорбате увеличивается вдвое только в случае 10%-ной исходной смеси гептена. При увеличении исходной концентрации гептена-1 содержание его в десорбате превышает исходное 1,3 раза. Активность цеолита Ц-202-623 в отношении нормальных углеводородов почти в 2 раза меньше, чем у других цеолитов.

Изомеризация двойной связи алкена происходит на указанном цеолите (с неполимеризующим связующим) в той же степени, как на других цеолитах.

На цеолите CaA, таблетированном без связующего, изомеризация двойной связи гептана-1 происходит слабее. Выход углеводородов, десорбированных водяным паром с молекулярных сит CaA и NaX, достигает 95—98%, с сит CaA — максимально — 80% от общего количества углеводородов, адсорбированных на молекулярных ситах.

В табл. 1—3 приведены данные о составе смесей, десорбированных водяным паром с молекулярных сит CaA, CaX и NaX в зависимости от содержания гептена-1 в исходной смеси от 7 до 70%. Из этих данных следует, что по изомеризующей способности в отношении *н*-алкенов синтетические цеолиты можно разделить на две довольно четко различающиеся группы — на ситах CaA и CaX происходит сильная изоме-

Рис. 2. Равновесная адсорбция смесей н-гептан-н-гептен-1 в паровой фазе при 100° на синтетических цеолитах CaA, CaX и NaX.

ризация *н*-алкенов, в то время как на сите NaX изомеризация незначительна, в связи с чем сохраняется до 90% исходного алкена-1. Причиной этого, по-видимому, является более сильное действие электрического поля катионов Ca⁺⁺ по сравнению с катионами Na⁺.

Таблица І

Содержа- ние гепте- на-1 в ис- ходной смеси	Выход десор- бата от обще- го колнчества сорбата	Состав десорбата, %*							
		Гептан	Гептен-1	транс- Гептен-3	цис- Геп- тен-3	<i>транс-</i> Гептен-2	<i>цис-</i> Гептен-2	Всего гептенов	
6.2	73.4	56.7	17.8(41.1)	7.0(16.1)	-	16.6(38.3)	1.9(4.4)	43.3(100.0)	
12.1	78.8	27.8	18,4(25,5)	18,4(25,5)	1.4(1.9)	29,1(40,3)	4.9(6.8)	72.2(100.0)	
17,2	72,0	25,5	25,5(34,2)	18,1(24,3)	1,1(1,5)	26,4(35,4)	3,4(4,6)	74,5(100,0)	
21,1	45,5	20,6	30,1(37,9)	15,0(18,9)	0,6(0,7)	30,7(38,7)	3,0(3,8)	79,4(100,0)	
39,5	55,0	19,4	18,7(23,2)	24,8(30,8)		35,0(43,4)	2,1(2,6)	80,6(100,0)	
43,7	65,9	16,0	25,8(30,7)	17,8(21,2)	0,6(0,7)	35,3(42,0)	4,5(5,4)	84,0(100,0)	
59,3	71,4	11,9	30,8(34,9)	19,3(21,9)	0,5(0,6)	33,1(37,6)	4,4(5,0)	88,1(100,0)	
70,2	65,1	8,2	17,1(18,6)	29,5(32,1)	1,6(1,7)	37,1(40,5)	6,5(7,1)	91,8(100,0)	
70,9	66,3	8,9	19,3(21,2)	26,7(29,3)	0,3(0,3)	39,3(43,2)	5,5(6,0)	91,1(100,0)	

Изомеризация н-гептена-1 на молекулярных ситах СаА Ц-202-249

* В скобках показано относительное содержание изомеров гептена.

Результаты изучения перемещения двойной связи в молекуле гептена-1 на ситах CaA (табл. 1) показывают, что основными формами, возникшими в результате изомеризации, являются *транс*-формы, т. е. *транс*-гептен-2 (30--40%) и *транс*-гептен-3 (20--30%). Цис-форма возникает значительно меньше (цис-гептена-2 — 5--6% и цис-гептена-3 в пределах 1%). Можно полагать, что в смеси, десорбированной с сит CaA, цис-формы представлены в маленьких количествах потому, что возникая, они не могут выйти из пор молекулярных сит. Десорбируются только *транс*-формы, что создает представление о протекании изомеризации только через *транс*-формы. На ситах NaX и CaX, имеющих более широкие поры, последнее явление не наблюдается.

Таблица 2

Содержа- ние гепте- на-1 в ис- ходной смеси	Выход десор- бата от обще- го количества сорбата	Состав десорбата. %*							
		Гептан	Гептен-1	<i>транс-</i> Гептен-3	цис- Геп- тен-3	<i>транс-</i> Гептен-2	<i>цис-</i> Гептен-2	Всего гептенов	
A CARLEN		2 2 1 -	Real of the	19823	1. 23				
6,8	74,9	62,2	0,8(2,0)	15,1(40,0)	1,5(4,0)	17,5(46,4)	2,9(7,7)	37,8(100,0)	
22,0	91,2	21,5	4,6(5,8)	20,4(26,0)	3,1(3,9)	31,1(39,7)	19,3(24,6)	78,5(100,0)	
40,0	95,7	8,4	26,3(28,7)	13,0(14,2)	1,5(1,6)	29,3(32,0)	21,5(23,5)	91,6(100,0)	
59,7	94,2	7,3	44,9(48,4)	6,5(7,0)	0,8(0,9)	20,6(22,2)	19,9(21,5)	92,7(100,0)	

Изомеризация н-гептена-1 на молекулярных ситах СаХ Ц-202-255

* В скобках показано относительное содержание изомеров гептена.

Десорбат с синтетических цеолитов CaX имеет сложный состав (табл. 2). Как и в случае CaA, здесь в избытке *транс*-формы, но повысилось также содержание *цис*-форм. Количество *цис*-гептена-2 увеличилось по сравнению с составом изомеров, полученных с CaA в 4 раза. На такой же порядок увеличилось содержание *цис*-гептена-3. Особенно усиленное образование *транс*-форм заметно при низком содержании гепРавновесная адсорбиия смесей н-гептан-н-гептен-1 в паровой фазе

Таблица З

A market and the state	and the second second	A STAR		14441 1 902	21 10 10	6R			
Содержа- ние гепте- на-1 в ис- ходной смесн	Выход десор- бата от обще- го количества сорбата	Состав десорбата, %*							
		Гептан	Гептен-1	транс-	цис- Геп-	транс- Гептен-2	цис-	Всего	
19/20	10	1		1	тен-э		(
6,9	85,4	43,4	47,5(85,4)	CR 11 Nikil	10-100	3,6(6,5)	4,5(8,1)	55,6(100,0)	
8,7	97,7	42,8	52,3(91,1)	- 10 man - 10 - 10	·	2,8(4,9)	2,3(4,0)	57,4(100,0)	
13,1	70,5	30,4	58,4(83,9)	All Halls	S-191	5,6(8,1)	5,6(8,1)	69,6(100,0)	
19,3	95,4	19,4	68,4(84,9)	11-1-150	1d	5,8(7,2)	6,4(7,9)	80,6(100,0)	
27,6	76,1	11,7	73,5(83,3)	- 1, 2		7,7(8,7)	7,1(8,0)	88,3(100,0)	
27,8	91,1	10,6	81,5(91,1)		2	3,1(3,5)	4,8(5,4)	89,4(100,0)	
43,7	86,1	4,9	85,5(89,9)	- 6		5,7(6,0)	3,9(4,1)	95,1(100,0)	
70,9	84,8	2,9	83,6(86,1)	1,-	IL.	5,9(6,1)	7,6(7,8)	97,1(100,0)	
70,9	84,7	2,4	90,4(92,6)	12 - 1 C ()	-	2,4(2,5)	4,8(4,9)	97,6(100,0)	

Изомеризация и-гептена-1 на молекулярных ситах NaX Ц-202-254

* В скобках показано относительное содержание изомеров гептена.

тена-1 в исходной смеси. При большем содержании гептена-1 в исходной смеси относительное значение транс-форм гептенов падает.

На синтетических цеолитах типа NaX образование цис- и транс-форм гептена-2 происходит поровну и не зависит от концентрации гептена-1 в исходной смеси (табл. 3), оставаясь в обоих случаях в пределах 4-8%. Образования цис- и транс-гептена-3 не наблюдается. Как уже отмечалось, содержание гептена-1 в десорбате с цеолита NaX превышает 90%. Следовательно, изомеризующее действие цеолитов типа NaX, а также глуховской глины, которая применялась в качестве связующего во всех этих ситах (CaA, CaX и NaX), незначительное и в условиях данной работы цис- и транс-формы гептена-З не успели возникнуть. Все же переход здесь довольно селективный, чтобы можно было ограничиться мнением о том, что фактор времени является наиболее существенным. Несомненно здесь имеют значение факторы, обусловленные структурой и составом этих сит.

ЛИТЕРАТУРА

1. Квитковский Л. Н., Крамской В. П., Гутыря В. С., Нефтехимия, 4,

№ 6, 882—885 (1963). Петряева Г. С., Тимофеева Е. А., Шуйкин Н. И., Докл. АН СССР, 172, № 2, 361 (1967).

Институт химии Академии наук Эстонской ССР Поступила в редакцию 19/V 1967

S. RANG, O. EISEN

n-HEPTAANI-n-HEPTEEN-1 SEGUDE ADSORPTSIOONI TASAKAAL SÜNTEETILISTEL TSEOLIITIDEL AURUFAASIS

n-Heptaani-n-hepteen-1 segude adsorptsiooni tasakaalu sünteetilistel tseoliitidel *n*-Heptaani-*n*-hepteen-1 segude adsorptsiooni tasakaand sunteetinister tseonruder CaA, CaX ja NaX uuriti temperatuuril 100°. Selgus, et nende adsorbentide abil on võimalik hepteenide sisaldust desorbaadis suurendada 2—6-kordseks. Sünteetilistel tseoliitidel CaA ja CaX toimuva hepteen-1 isomerisatsiooni tõttu sisaldab desorbaat 30—40% trans-hepteen-2 ja 20—30% trans-hepteen-3. Molekulaarsõeltel NaX toimub isomerisatsioon tunduvalt vähemas ulatuses ning lähtehepteen-1 säilib 90%.

317

S. RANG, O. EISEN

DAS ADSORPTIONSGLEICHGEWICHT VON SYSTEMEN *n*-HEPTAN-*n*-HEPTEN-1 IN DER DAMPFPHASE AUF SYNTHETISCHEN ZEOLITHEN

Es wurden das Adsorptionsgleichgewicht von Systemen *n*-Heptan-*n*-Hepten-1 in der Dampfphase auf synthetischen Zeolithen CaA, CaX und NaX bei einer Temperatur von 100°C untersucht und die allgemeinen Gesetzmäßigkeiten bei den Adsorptions-Desorptionsprozessen mitgeteilt.

peratur von 100°C untersucht und die angemeinen Gesetzmaßigkeiten bei den Adsorptions-Desorptionsprozessen mitgeteilt. Die Zeolithen vom Typ CaA und CaX haben eine starke doppelbindungsisomerisierende Wirkung und das Desorbat enthält bis 80—90% von bindungsisomeren normalen Heptenen, hauptsächlich trans-Hepten-2 und trans-Hepten-3. In geringem Maße doppelbindungsisomerisierend wirkt der Zeolith vom Typ NaX, von dem ein Desorbat mit 90% Gehalt an Hepten-1 abgetrennt wurde. Als Desorptionsmittel diente Wasserdampf im Inertgasstrom.