ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 25 ХИМИЯ * ГЕОЛОГИЯ. 1976, № 3

УДК 532.612; 532.695

Рутт ТОМСОН, С. ФАЙНГОЛЬД, Н. МАСПАНОВ

КОЛЛОИДНО-ХИМИЧЕСКИЕ СВОЙСТВА н-АЛКИЛАМИНОЭТИЛСУЛЬФАТОВ И -СУЛЬФОНАТОВ

1. Поверхностное натяжение, критическая концентрация мицеллообразования и эмульгирующая способность

Данные о коллондно-химических свойствах n-алкиламиноэтилсульфатов и -сульфонатов в литературе отсутствуют. Для изучения этих свойств синтезированы члены гомологических рядов n-алкиламиноэтилсульфатов и -сульфонатов с длиной алкильной цепи n-сn-сn-сn-с Чистота полученных препаратов проверена химическими и спектральным анализами. Исследовались натриевые соли:

н-гексиламиноэтилсульфата, н-октиламиноэтилсульфата, н-дециламиноэтилсульфата, н-додециламиноэтилсульфата, метилдециламиноэтилсульфата, н-гексиламиноэтилсульфоната, н-октиламиноэтилсульфоната, н-дециламиноэтилсульфоната, метиламиноэтилсульфоната, метиламиноэтилсульфата, метиламиноэтилсульфоната, метиламино

тилдодециламиноэтилсульфоната.

Широкая область применения поверхностно-активных веществ (ПАВ) не позволяет выделить какой-нибудь один показатель коллоидно-химических свойств, с помощью которого можно было бы однозначно охарактеризовать изучаемые ПАВ. Наиболее показательной является совокупность коллоидно-химических свойств и в первую очередь поверхностное натяжение, критическая концентрация мицеллообразования и эмульгирующая способность растворов ПАВ.

Поверхностная активность. Поверхностное натяжение водных растворов н-алкиламиноэтилсульфатов и -сульфонатов измерялось сталагмометрически в двухсекундном и двухминутном диапазонах образования

капель [1].

На рис. 1 и 2 приведены изотермы поверхностного натяжения растворов *н*-алкиламиноэтилсульфатов, а на рис. 3 и 4 — -сульфонатов на границе раздела фаз с воздухом при температурах 20 и 50°С. Для высших гомологов приведена лишь начальная ветвь изотермы. Это объясняется ограниченной растворимостью дециламиносульфата в холодной воде. В гомологическом ряду *н*-алкиламиноэтилсульфатов поверхностная активность возрастает с увеличением длины цепи алкильного радикала вплоть до потери ими растворимости. Поверхностная активность алкиламиноэтилсульфонатов несколько меньше, по сравнению с активностью *н*-алкиламиноэтилсульфатов. Поверхностная активность алкиламиноэтилсульфатов и -сульфонатов примерно одинакова с активностью алкиларилсульфонатов при соответствующих величинах гидрофобной части молекул.

Поверхностное натяжение растворов *н*-алкиламиноэтилсульфатов уменьшается с повышением температуры. Такая зависимость не наблю-

дается для н-алкиламиноэтилсульфонатов.

Исследования поверхностного натяжения растворов *н*-дециламиноэтилсульфатов и *н*-метилдециламиноэтилсульфатов показали, что метильная группа при атоме азота существенно не влияет на поверхностную активность препаратов. Несколько лучшими поверхностно-активными свойствами обладает *н*-метилдодециламиноэтилсульфонат по сравнению с *н*-додециламиноэтилсульфонатом. По-видимому, это связано с хорошей растворимостью высших гомологов, имеющих третичный атом азота.

Мицеллообразование. По данным измерений поверхностного натяжения растворов вычислены критические концентрации мицеллообразования

(KKM), которые приведены в табл. 1 [2].

ККМ, имеющие практическую ценность, проявляются у гомологов

Таблица 1

Критические концентрации мицеллообразования водных растворов Na-солей алкиламиноэтилсульфатов и -сульфонатов, % (раствор в дистиллированой воде)

Вещество	20°	C	50)°C	
	Время образования капли				
	2 сек	2 мин	2 сек	2 мин	
-Дециламиноэтилсульфонат	0,0603	0,033	0,093	0,055	
-Додециламиноэтилсульфонат	AAUB C. K. II	4 4 de Table	0,066	0,051	
Метилдодециламиноэтилсульфонат — — — — — — — — — — — — — — — — — — —	HTMO-NO. LEAD	when to me	0,018	0,016	
Октиламиноэтилсульфат	TEORIMBE STORY	0,28	rediction	HTECHIN	
Дециламиноэтилсульфат	0,024	0,02	0,093	0,078	
Додециламиноэтилсульфат	as a section	_	0,078	0,056	
метилдециламиноэтилсульфат (https://doi.org/10.1011/10.10	ON A PERIOR	distribution of	THE PROPERTY.	0,076	

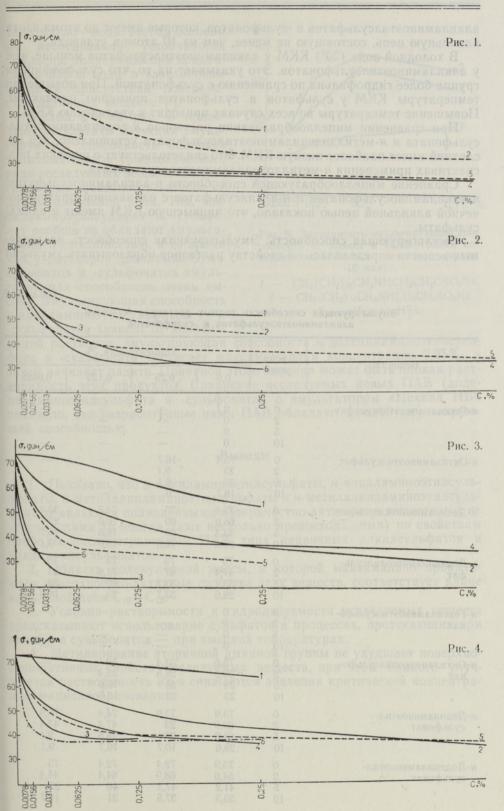

Рис. 1. Зависимость поверхностного натяжения растворов *н*-алкиламиноэтилсульфатов от молекулярной массы. Время образования капли 2 *мин*.

Рис. 2. Зависимость поверхностного натяжения растворов *н*-алкиламиноэтилсульфатов от молекулярной массы. Время образования капли 2 сек.

Рис. 3. Зависимость поверхностного натяжения растворов *н*-алкиламиноэтилсульфонатов от молекулярной массы. Время образования капли 2 мин.

Рис. 4. Зависимость поверхностного натяжения растворов *н*-алкиламиноэтилсульфона тов от молекулярной массы. Время образования капли 2 сек.

 $1-{\rm CH_3(CH_2)_4CH_2NHCH_2CH_2SO_3Na}$ (20° C), $2-{\rm CH_3(CH_2)_6CH_2NHCH_2CH_2SO_3Na}$ (20° C), $3-{\rm CH_3(CH_2)_6CH_2NHCH_2CH_2SO_3Na}$ (20° C), $4-{\rm CH_3(CH_2)_8CH_2NHCH_2CH_2SO_3Na}$ (50° C), $5-{\rm CH_3(CH_2)_{10}CH_2NHCH_2CH_2SO_3Na}$ (50° C), $6-{\rm CH_3(CH_2)_{10}CH_2N(CH_3)}$ CH_2CH_2SO_3Na (50° C).

алкиламиноэтилсульфатов и -сульфонатов, которые имеют до атома азота алкильную цепь, состоящую не менее, чем из 10 атомов углерода.

В холодной воде (20°) ККМ у алкиламиноэтилсульфатов меньше, чем у алкиламиноэтилсульфонатов. Это указывает на то, что сульфоэфирная группа более гидрофильна по сравнению с сульфонатной. При повышении температуры ККМ у сульфатов и сульфонатов примерно одинаковы. Повышение температуры во всех случаях приводит к увеличению ККМ.

При сравнении мицеллообразования растворов *н*-додециламиноэтилсульфоната и *н*-метилдодециламиноэтилсульфоната установлено, что последний имеет наиболее низкую ККМ. Это свидетельствует о широких пер-

спективах применения н-метилдодециламиноэтилсульфоната.

Сравнение мицеллообразующей способности *н*-алкиламиносульфатов, *н*-алкиламиносульфонатов и *н*-алкилсульфатов с одинаковой прямоцепочечной алкильной цепью показало, что наивысшую ККМ имеют *н*-алкилсульфаты.

Эмульгирующая способность. Эмульгирующая способность исследуемых веществ определялась по свойству растворов образовывать эмульсии

Таблица 2 Эмульгирующая способность водных растворов Na-солей алкиламиноэтилсульфатов и -сульфонатов

Вещество	Время,	Концентрация, %			
	мин	0,5	0,25	0,125	0,0625
н-Гексиламиноэтилсульфат	0 2 5 10	9,1 0 0 0	=		
ч-Октиламиноэтилсульфат	0 2 5 10	75,4 23 23 16,7	16,7 9,1 9,1 0		=
н-Дециламиноэтилсульфат	0 2 5 10	75,8 66,9 33,3 28,6	75 60 23 16,6	74,5 16,6 16,6 16,6	33,4 23 16,7 9,1
н-Додециламиноэтилсуль- фат	0 2 5 10	75 47,4 33,7 28,6	75 67 33,7 33,7	75 71,6 60 23	75 23 23 16,7
н-Гексиламиноэтилсульфо- нат	0 2 5 10	0 0 0 0	=	=	
н-Октиламиноэтилсульфо- нат	0 2 5 10	75,6 28,6 23 23	33,4 28,5 23 23	50 33,4 16,6 16,6	=
4-Дециламиноэтил- сульфонат	0 2 5 10	73,9 69,9 61,6 28,6	73,9 23 23 16,7	74,4 47,4 28,6 16,7	70,9 47,4 9,1 9,1
з-Додециламиноэтил- сульфонат	0 2 5 10	73,9 54,6 41,2 33,3	72,4 68,9 47,3 37,5	72,4 64,4 46 31	75 44,4 23 16,7

типа масло—вода. Метод основан на исследовании устойчивости эмульсии, полученной при конденсации паров воды в вазелиновом масле в присутствии поверхностно-активных веществ [3].

В табл. 2 и на рис. 5 приведены результаты изучения эмульгирующей способности наиболее типичных членов гомологического ряда исследуемых веществ. Эмульгирующая способность зависит от длины алкильной цепи. Так, гексиламиноэтилсульфат и -сульфонат вообще не обладают эмульгирующей способностью, в то время как у растворов дециламиноэтилсульфатов и -сульфонатов эмульгирующая способность очень высока. Эмульгирующая способность н-алкиламиноэтилсульфатов -сульфонатов зависит от концент-

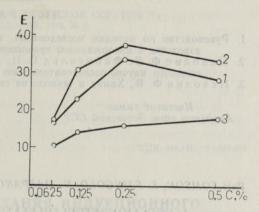


Рис. 5. Зависимость эмульгирующей способности от класса и концентрации поверхностно-активных веществ (время 10 мин).

СH₃(CH₂)₁₀CH₂NHCH₂CH₂OSO₃Na,
CH₃(CH₂)₁₀CH₂NHCH₂CH₂SO₃Na.
«Неккал НБ».

раций растворов, эмульгирующая способность *н*-додециламиноэтилсульфата и -сульфоната достигает максимума при концентрации 0,25%, а затем начинает падать. Причиной этого явления может быть плохая растворимость этих продуктов. Сравнение исследуемых новых ПАВ (додециламиноэтилсульфата и -сульфоната) с эмульгатором «Неккал НБ» показало, что разработанные нами ПАВ обладают лучшей эмульгирующей способностью.

Выводы

1. Показано, что н-алкиламиноэтилсульфаты, н-алкиламиноэтилсульфонаты, н-метилалкиламиноэтилсульфонаты и н-метилалкиламиноэтилсульфонаты являются полноценными поверхностно-активными веществами, не уступающими (а иногда даже несколько превосходящими) по свойствам наиболее распространенным ПАВ типа первичных алкилсульфатов и алкиларилсульфонатов.

2. Область молекулярной массы, в которой максимально проявляются поверхностно-активные свойства этих веществ, соответствует длине

алкильной цепи С10-С12.

 Условия растворимости и гидролизуемости исследуемых веществ предсказывают использование сульфатов в процессах, протекающих при

низких, а сульфонатов — при высоких температурах.

4. Метилирование вторичной аминной группы не ухудшает поверхностно-активных свойств исследуемых веществ, при этом немного улучшается растворимость их и снижаются значения критической концентрации мицеллообразования.

ЛИТЕРАТУРА

1. Руководство по методам исследования, технохимическому контролю и учету производства в масложировой промышленности. IV, Л., 1963. 2. Неволин Ф. В., Файнгольд С. И., Краль-Осикина Г. А. и др., Тр. Все-

союзного научно-исследовательского института жиров, вып. 26 (1967).

3. Неволин Ф. В., Химия и технология синтетических моющих средств, М., 1964.

Институт химии Академии наик Эстонской ССР Поступила в редакцию

Rutt TOMSON, S. FAINGOLD, N. MASPANOV

n-ALKÜÜLAMINOETÜÜLSULFAATIDE JA n-ALKÜÜLAMINOETÜÜL-SULFONAATIDE KOLLOIDKEEMILISED OMADUSED

Artiklis on esitatud uurimuste tulemused, mis on saadud mõningate n-alküülaminoetüülsulfaatide, n-alküülaminoetüülsulfonaatide, n-metüülalküülaminoetüülsulfaatide ja n-metüülalküülaminoetüülsulfonaatide pindpinevuse, mitsellide moodustamise kriitilise kontsentratsiooni ja emulgeerivate omaduste määramisel.

Selgitati, millistel eespool nimetatud ainete homoloogilise rea liikmetel on pindaktiivseid omadusi, mis vastavad sünteetiliste pesemisvahendite tootmiseks kasutatavaile pind-

aktiivsetele komponentidele esitatavaile nõuetele.

Rutt TOMSON, S. FAINGOLD, N. MASPANOV

THE COLLOID-CHEMICAL PROPERTIES OF n-ALKYLAMINO-ETHYLSULPHATES AND n-ALKYLAMINOETHYLSULPHONATES

The results of surface tension, critical micelle concentration, emulsifying properties of some n-alkylaminoethylsulphonates, n-alkylaminoethylsulphates, n-methylalkylaminoethylsulphonates and n-methylalkylaminoethylsulphates are presented.

The surface-active properties of synthesized products have been compared and the corresponding compounds among the homologous compositions of those suitable for the conditions of tenside production have been determined.