ЛИТЕРАТУРА

- 1. Lippmaa E., Pehk T., Past J., Eesti NSV TA Toim., Füüs.-Matem., 16, 345 (1967).
- 2. Levy G. C., Nelson G. L., Carbon-13 NMR for Organic Chemists, Wiley Inter-science, 1972.
- Levy G. C., Nelson G. L., J. Amer. Chem. Soc., 94, 4897 (1972).
 Lippmaa E., Pehk T., Kemian Teollisuus, 24, 1001 (1967).

Институт химии Академии наук Эстонской ССР Поступила в редакцию 1/III 1974

Институт кибернетики Академии наук Эстонской ССР

> EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 23. KÖIDE KEEMIA * GEOLOOGIA, 1974, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 ХИМИЯ * ГЕОЛОГИЯ. 1974, № 3

УДК 541.141.8: 547.68

Лиа ПААЛЬМЕ, Одетт ПЕРЭН-РУССЕЛЬ, М. ГУБЕРГРИЦ, П. ЖАКИНЬОН

ФОТОДЕГРАДАЦИЯ НЕКОТОРЫХ МЕТИЛПРОИЗВОДНЫХ 3,4-БЕНЗПИРЕНА, РАСТВОРЕННЫХ В н-ОКТАНЕ

Lia PAALME, Odette PERIN-ROUSSEL, M. GUBERGRITS, P. JACQUIGNON. MONEDE 3,4-BENSO-PÜREENI METÜÜLDERIVAATIDE FOTODEGRADATSIOON n-OKTAANIS

Lia PAALME, Odette PERIN-ROUSSEL, M, GOUBERGRITS, P. JACQUIGNON. PHOTODEGRA-DATION DES CERTAINS DERIVES METHYLES DU BENZO(3,4) PYRENE. SOLUTION EN n-OCTANE

В предыдущем сообщении [1] охарактеризована кинетика фотоинициированной деградации некоторых моно- и диметилпроизводных 3,4-бензпирена (БП), растворенных в бензоле. На последующем этапе исследования, результаты которого составляют предмет настоящей краткой публикации, аналогичный эксперимент был поставлен с тем же набором полициклических углеводородов (ПАУ) при неизменных условиях и методике проведения опытов (также в атмосфере аргона и кислорода [2]), но с использованием в качестве растворителя н-октана. Перечень производных БП, подавляющая часть которых была синтезирована в лаборатории органического синтеза Института химии природных соединений Национального центра научных исследований Франции, и их структура приведены в табл. 1.

Настоящее сообщение является первым плодом непосредственного научного сотрудничества французских и советских ученых в области изучения структуры и реакционной способности канцерогенных соеди-

нений.

Основные результаты исследования в первичной графической обработке приведены на рис. 1. Рассмотрение последнего показывает, что изменение во времени концентрации реагента происходит по линейному

закону, что отвечает кажущемуся нулевому порядку суммарной реакции при расчете по убыли ПАУ. На этом основании по обычной методике определены значения константы скорости суммарной реакции (k), квантового выхода (Φ) и константы деградации (k') для изученных соединений, которые сопоставлены в табл. 2 с величиной энергии возбуждения молекул данного ПАУ в первое синглетное состояние (0-0) переход в спектре флуоресценции). Добавим, что опыты с III $(\pi + \pi + \pi + \pi)$ проведены при пониженной концентрации реагента. Помещенные в

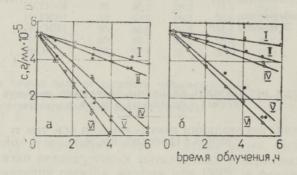


Рис. 1. Кинетические кривые фотодеградации метилпроизводных 3,4-бензпирена (см. табл. 1) в присутствии кислорода (a) и в атмосфере аргона (b).

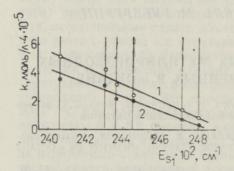


Рис. 2. Константа скорости фотодеградации в зависимости от E_{s_1} в присутствии кислорода (1) и в атмосфере аргона (2).

табл. 2 в скобках значения k, приведенные концентрации $2.0 \cdot 10^{-4}$ моль/л, получены в результате приближенного пересчета на основании установленной нами зависимости k от k'.

I 3,4-Бензпирен

II 1-Метил-3,4-бензпирен

III 6-Метил-3,4-бензпирен

IV 1,8-Диметил-3,4-бензпирен

V 5,10-Диметил-3,4-бензпирен

VI 5,8-Диметил-3,4-бензпирен

Анализ полученных данных показывает, что изменение природы растворителя (для которого область максимального поглощения в противоположность бензолу исключена из волнового диапазона применяемого УФ-излучения) не вызывает заметных качественных изменений макрокинетических закономерностей, управляющих процессом, но отражается на количественных его показателях. Так, все значения κ , Φ и κ' для системы, в которой растворителем служит бензол, как правило, оказыва-

Tab nuya

Фотодеградация метилпроизводных 3,4-бензпирена (мощность дозы 1,6-1016 квант/мл-сек)

DATE OF THE PARTY		0	10		Co	единение	Соединение (см. табл. 1)	(1)	1111	100	100	
Показатели	I	HÔ:	II		III	I	I	IV	1	10 Kel	A CONTRACTOR OF THE PARTY OF TH	em o
PHEO PHEO PHEO PHEO PHEO PHEO PHEO PHEO	02	Ar	02	Ar	02	Ar	02	Ar	02	Ar	02	Ar
c, mons/n·10-4	2,0	2,0	2,1	2,1	0,31	0,31	2,03	2,03 -	2,07	2,07	1,94	1,94
k, monb/1.4.10-5	1,1	0,4	1,4	0,75	0,46	0,32	3,1	2,1	4,3	3,2	5,3	3,5
					(2,4)	(2,0)						
k', cek-1.10-5	1,52	95'0	1,85	66'0	0,41	0,29	4,2	2,9	5,8	4,3	2,6	2,0
Ф, молек/квант.10-4	1,1	0,4	1,4	0,75	0,46	0,32	3,1	2,1	4,3	3,2	5,3	3,5
λ0-0, HM	40;	403,0	40	404,5	40	409,2	4	410,6	41	411,3	4	415,5
E_{81} , c_{M-1}	248	24807	24	24715	24	24432	24	1346	24.	24305	2,	24059

ются выше, чем приведенные в табл. 2. Тем не менее, ввод в молекулу БП одного или двух метильных заместителей увеличивает ее реакционную способность в процессах фотоинициированной деградации. Изменение реакционной способности метилпроизводных БП как функции их структуры по-прежнему коррелирует со снижением энергии первого синглетного возбужденного состояния молекул (см. рис. 2). Коэффициент корреляции составляет 0,94 и 0,92 соответственно для данных, полученных при деградации в атмосфере кислорода и аргона.

Результаты исследования продуктов деградации изучаемых ПАУ (в частности, установление 6-метилпроизводного в составе реакционной смеси при деградации II из табл. 1) позволяют полагать, что в ходе суммарного процесса протекают и частные реакции внутримолекулярной перегруппировки с перемещением метильного радикала в молекуле производного БП.

ЛИТЕРАТУРА

- Губергриц М., Паальме Л., Пахапилль Ю., Изв. АН ЭССР, Хим. Геол., 22, 31, 1973.
 Паальме Л., Губергриц М., Изв. АН ЭССР, Хим. Геол., 20, 127, 1971.

Институт химии АН Эстонской ССР Институт химии природных соединений НЦНИ Франции

Поступила в редакцию 5/III 1974

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 23. KÖIDE KEEMIA * GEOLOOGIA. 1974, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 ХИМИЯ * ГЕОЛОГИЯ. 1974. № 3

УДК 556.334.4(474.2)

К. РИЕТ

О ВОДОПРОНИЦАЕМОСТИ КАРБОНАТНОЙ ТОЛЩИ ОРДОВИКА НА ЭСТОНСКОМ МЕСТОРОЖДЕНИИ ГОРЮЧИХ СЛАНЦЕВ

K. RIET, ORDOVIITSIUMI KARBONAATSE KOMPLEKSI VEELÄBILASKVUSEST EESTI PÕLEV-KIVIMAARDLA PIIRES

K. RIET. ÜBER DIE WASSERDURCHLÄSSIGKEIT DER KARBONATISCHEN SCHICHTENFOLGE DES ORDOVIZIUMS IN DER ESTNISCHEN BRENNSCHIEFERLAGERSTÄTTE

В результате различных гидрогеологических исследований, проведенных на Эстонском месторождении, установлено, в частности, что водопроницаемость ордовикской карбонатной толщи характеризуется:

- 1) крайней изменчивостью в пределах небольших участков ввиду трешинно-карстового характера подземных вод;
- 2) отсутствием региональной закономерности в распределении по площади;
- 3) тенденцией к убыванию по мере погружения водовмещающих пород ввиду затухания трещиноватости с глубиной.