ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 22 ХИМИЯ * ГЕОЛОГИЯ. 1973, № 2

УДК 547.262:661.185

С. ФАЙНГОЛЬД, Я. ЙЫЕРС

АЛКИЛФЕНИЛЭТИЛОВЫЕ СПИРТЫ И ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА (ПАВ) НА ИХ ОСНОВЕ*

В настоящее время в производстве ПАВ наибольшее распространение получили алкиларилсульфонаты с длиной боковой цепи $C_{10}-C_{13}$. Для их производства используются фракции олефинов или хлоралканов, выкипающие в пределах температур $180-240^{\circ}$ С. Основная часть олефинов получается путем крекинга твердых или мягких парафинов. При этом выход основной фракции ($180-240^{\circ}$) составляет 10-15%, а фракции, выкипающие выше 240° и ниже 180° , до настоящего времени не нашли применения для синтеза ПАВ массового назначения.

В Институте химии АН ЭССР разрабатываются способы синтеза сульфоацетатов, сульфоэтиламиноацетатов, сульфоакрилатов, сульфоэтиламиноакрилатов, алкилфенилэтанолов, алкилфенилэтансульфатов и алкилфенилэтанполиэтоксиэтанолов, позволяющие использовать для син-

теза ПАВ фракции олефинов, выкипающие от 120 до 300°.

Алкилфенилэтиловые спирты (АФЭС) в ряду первичных спиртов обладают наиболее выгодными экономическими показателями, так как производятся на основе дешевых фенилалканов.

Реакция получения АФЭС протекает по схеме

$$R- \bigcirc + CH_2 - CH_2 \frac{AICl_3}{HCl} R- \bigcirc - CH_2 CH_2 OAICl_2 \stackrel{H_2O}{\longrightarrow} R- \bigcirc - CH_2 - CH_2 OH$$
(1)

В зависимости от длины цепи и строения алкильного радикала получаются различные первичные спирты, которые известными способами превращаются в тензиды с широким диапазоном свойств. В литературе очень мало сведений об условиях протекания этой реакции [1-5].

При синтезе АФЭС имеют место иные побочные реакции, чем при

синтезе фенилэтилового спирта.

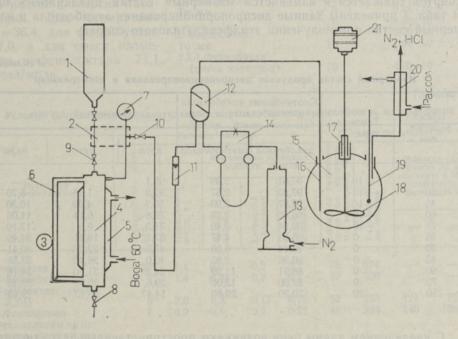
Замена водорода бензольного ядра углеводородным радикалом приводит к появлению в продуктах реакции, кроме АФЭС, бензола, диалкилбензола, фенилэтилового и диалкилфенилэтилового спиртов.

Основными побочными реакциями, определяющими показатели процесса и чистоту целевого продукта, являются диспропорционирование алкильных групп и последующее присоединение к продуктам реакции окиси этилена.

^{*} Текст доклада на 6-м Международном конгрессе в сентябре 1972 г. в Цюрихо по поверхностно-активным веществам.

$$2R - \bigcirc \xrightarrow{A|C|_3} \bigcirc + R - \bigcirc \stackrel{R}{\bigcirc}$$
 (2)

При синтезе этилфенилэтилового спирта относительная реакционная способность диалкилбензолов выше, чем моноалкилбензола. При удлинении алкильной цепи реакционная способность диалкилбензолов снижается и в реакционной смеси появляются углеводороды, выкипающие в тех же температурных интервалах, что и целевые спирты.


Для получения спиртов, не загрязненных углеводородами, оксиэтилирование необходимо вести в условиях, устраняющих или снижающих

до минимума реакцию диспропорционирования фенилалканов.

Значительную роль играют побочные реакции конденсации окиси этилена в диоксан и присоединение к окиси этилена хлористого водорода с

образованием этиленхлоргидрина.

Описание установки. Оксиэтилирование фенилалканов проводится по обычной методике, усовершенствованной специальным устройством — мерником для испарения и дозирования окиси этилена (рисунок). В верх-

ней части аппарата находится баллон (1) с окисью этилена, соединенный блоком вентилей (2) с верхней частью мерника-испарителя (3). Он автоматически открывается, соединяясь с блоком. Мерник-испаритель состоит из цилиндра (4), помещенного в нагревательную рубашку (5) и снабженного боковой стеклянной измерительной трубкой (6). Давление в мернике измеряется монометром (7), вмонтированным в блок вентилей. В нижней части мерника-испарителя находится вентиль (8) для пропуска газов при продувке и передавливании окиси этилена. При помощи системы вентилей (9 и 10) совершается заполнение мерника и поддерживается определенная скорость выпуска паров окиси этилена. Точность измерения расхода окиси этилена составляет 0,1 г.

Методика синтеза. Для снятия кинетических показателей и изучения возможностей устранения протекания нежелательных побочных реакций

оксиэтилирование проводилось по следующей методике.

При температуре —20° и энергичном перемешивании фенилалкана в реактор медленно прибавляется хлористый алюминий и подключается ток азота. Затем температура поднимается до заданной и подается окись этилена. Для определения состава реакционной смеси в данный момент времени используется специальная методика торможения реакции в отобранной пробе. Специальный шприц объемом 10 мл заполняется на 6—7 мл этанолом, охлаждаемым до —70°. При поступлении пробы в шприц реакционная смесь проникает в слой спирта, где моментально охлаждается с одновременным разложением катализирующего комплекса.

Состав смеси определяется газохроматографически с предварительным определением времени удерживания синтезированных эталонных вешеств.

Изомерный состав. Выход этилфенилэтиловых спиртов составляет 67—85% от теоретически возможного по хлористому алюминию и зависит от температуры реакции. С повышением температуры выход спиртов снижается и изменяется изомерный состав диалкилбензолов. В табл. 1 приведены данные диспропорционирования этилбензола и изомерный состав при получении этилфенилэтилового спирта.

Таблица 1 Изомерный состав продуктов диспропорционирования и изомеризации

Время реакции, мин	Темпера- тура, ° С	и диэтилбен	е этилбензола зола в реак- чеси, моль%	Изомерный состав			
		этилбензол	диэтилбензол	мета-	орто-	пара-	
15 30 45 60 75 15 30 45 60 75 75	-10 -10 -10 -10 -10 -10 0 0 0 0 0	97,61 97,33 97,07 96,80 96,54 95,53 93,14 90,95 88,91 87,00 70,20	2,39 2,67 2,93 3,20 3,46 4,47 6,86 9,05 11,09 13,00 29,80	99,1 92,3 85,7 79,8 74,3 57,1 47,5 40,0 34,2 29,6 14,47	1,98 4,00 6,14 8,5 18,41 22,08 26,42 31,70 38,02 56,13	5,76 10,30 14,06 17,19 24,49 30,41 33,58 34,16 32,35 29,40	

С увеличением длины цепи возникают пространственные затруднения: содержание *пара*-изомеров увеличивается, а скорость реакции диспропорционирования уменьшается. Тем не менее, диспропорционирование алкильных групп в условиях синтеза АФЭС определяет чистоту и выход целевого продукта, поэтому кинетика этой реакции изучалась более подробно на индивидуальных соединениях с длиной алкильной цепи от 2 до 8 атомов углерода.

Кинетика реакции диспропорционирования фенилалканов. Кинетические показатели этой реакции изучались на индивидуальных веществах в условиях протекания реакции присоединения окиси этилена к фенилалканам, т. е. при избытке катализатора и отсутствии бензола в начале реакции. Данные о скорости реакции приведены в табл. 2.

С увеличением длины боковой цепи скорость реакции снижается. Перемещение бензольного ядра к центру алкильной цепи также уменьшает скорость реакции. Диспропорционирование этилбензола является мономолекулярной реакцией первого порядка и ее полупериод не зависит от исходной концентрации. Первый порядок реакции сохраняется лишь в начале диспропорционирования, а затем изменение логарифмов концентрации во времени не имеет прямолинейного характера.

Температурный коэффициент реакции для этилбензола равен 13 и с увеличением длины цепи фенилалкана увеличивается. Для фенилбутана

температурный коэффициент составляет 30. Большой температурный коэффициент объясняется увеличением растворимости избыточного хлористого алюминия при повышении температуры реакционной смеси. С увеличением температурного коэффициента растет и энергия активации. Для фенилэтана E = 36.4, для фенилбутана 47,0, а для смеси изомеров н-фенилоктана 71,1 ккал/моль.

Таблица 2 Скорость реакции диспропорционирования фенилалканов

Исходный фенилалкан	Темпера- тура, °С	Скорость реак- ции, мин-1
Этилбензол	-10	1,27 · 10-3
То же	0	$1.64 \cdot 10^{-2}$
2-Фенилбутан	-15	$3.10 \cdot 10^{-4}$
То же	- 5	$9,48 \cdot 10^{-3}$
" "	6	4,90 · 10-1
2-Фенилоктан	5	2,09 • 10-3
То же	10	7,90 - 10-3
2,3,4-Фенилбутан	and and days	
(смесь изомеров)	10	$4,55 \cdot 10^{-3}$

Таблица 3 Условия синтеза алкилфенилэтиловых спиртов и моющая способность их сульфатов

Исходный фенилалкан	Условия синтеза				Показатели продуктов				
	реак		Количество исходных веществ, г-моль			хлористо- ило, %	чис-	Моющая спо-	
	Температура цин. °C Продолжитель ность, ч	фенил- алкан Хлористый	гый	Хлористый алюминий Окись этилена	Выход от теор ского по хло му алюминию,	Гидроксильное ло спиртов	ношению к Nа- додецилсуль- фату (0,25%)		
			Хлорист				20°	80°	
Фенилэтан 2-Фенилбутан	-20 - 5	1,4 1,4	0,6 0,45	0,2 0,2	0,2 0,2	85 57	374 306		
Фенилоктан (смесь 2,3,4) 2-Фенилнонан Фенилалканы на ос-	5 7	2,0 0,9	0,3 0,4	0,15 0,2	0,15 0,22	52 45	233 224	121 140	72 106
нове технических олефинов С ₈ —С ₉	10	2,5	1,9	1,4	1,5	43	222	com	-

Изомеризация диалкилбензолов из мета- в орто- и пара-положения имеет первый порядок, константа скорости при —10° составляет $5,77\cdot 10^{-3}$ мин⁻¹, при 0° $1,71\cdot 10^{-2}$ мин⁻¹, температурный коэффициент равен примерно 3, а энергия активации составляет 16 ккал/моль.

Свойства продуктов. Алкилфенилэтиловые спирты и их поверхностно-активные производные обладают рядом ценных свойств, отличающих их от обычных жирных спиртов. Так алкилфенилэтанолы, синтезированные из технического сырья, с молекулярным весом 246 обладают вязкостью при 50° 23,5 и при 20° 138,2 сантипуаз. При 50° первичный додеканол обладает вязкостью 8,33 сантипуаз, а при 20° — кристал-

лическое вещество. Температура плавления алкилфенилэтиловых спиртов (246) —57°, а додеканола 22,4°. Условия синтеза некоторых продуктов и показатели их качества приведены в табл. З. В связи с высокой растворимостью этих продуктов, они особенно привлекательны для применения при низких температурах. Это относится также и к неионогенным производным.

ЛИТЕРАТУРА

- Канадский пат. 340555; С. А. 28, 4067 (1934).
 Пат. США 2047396; С. А. 80, 6005 (1937).
 Шорыгина Н. В., ЖОХ, 21, 1273 (1951).
 Файнгольд С. И., Йыерс Я. Х., Авт. свид. СССР № 181078 (1964).
 Файнгольд С. И., Йыерс Я. Х., Сборник статей по синтезу и терминологии ПАВ. Таллин, 1972.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 28/VIII 1972

S. FAINGOLD, J. JOERS

ALKÜÜLFENÜÜLFENOOLID JA NENDE BAASIL SÜNTEESITUD PINDAKTIIVSED AINED

Alküülfenüületanoolid (AFE) saadakse etüleenoksiidi ja fenüülalkaanide katalüütilisel (AlCl₃) kondensatsioonil saagisega 45—85% teoreetiliselt võimalikust. Kõrvalreaktsioonide tulemusena tekivad etüleenkloorhüdriin, benseen, dialküülbenseen, dialküülfenüületanoolid ja polümeerid. Määrati kõrvalreaktsioonina toimuva fenüülalkaanide disproportsioneerumisreaktsiooni kineetilised parameetrid. Esitatakse mõningate AFE-de sünteesi tingimused ja andmed vastavate pindaktiivsete ainete pesemisvõime kohta.

S. FAINGOLD, J. JOERS

AIKYL PHENYL ETHANOLS AND SURFACTANTS ON THEIR BASIS

Alkyl phenyl ethanols (AFE) are obtained by catalytical condensation (AlCl₃) of ethylene oxide and phenyl alcanes. The actual yield of AFE amounts to 45—85 per cent of the theoretical possibilities. The by-products are ethylene chlorohydrine, benzene, dialkyl benzene, dialkylphenyl ethanols and polymers.

Kinetic indices of the disproportionation of phenyl alcanes obtained as a result of a by-reaction have been determined.

The conditions for a synthesis of several AFE are proposed and data on the washing power of respective surfactants are presented.