ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 21 химия * геология. 1972, № 2

https://doi.org/10.3176/chem.geol.1972.2.08

УДК 546.32' 151+546.32' 23+620.181.4

ТИЙУ СААР, Х. КОППЕЛ

ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ ЙОДИДА КАЛИЯ С СЕЛЕНИДАМИ КАЛИЯ

В работе [1] была представлена фазовая диаграмма системы K_2Se_3 —KJ, являющейся разрезом тройной системы K—Se—J. В настоящей работе изучены разрезы K_2Se —KJ, K_2Se_2 —KJ, K_2Se_2 —KJ и K_2Se_5 —KJ этой системы.

Методика эксперимента

Методика эксперимента в основном не отличалась от методики, использованной в работе [1]. Отметим только, что кривые второго нагревания некоторых сплавов регистрировались начиная с температуры $100\,^{\circ}$ С (для разреза K_2Se_4 —KJ) или с температуры, близкой к комнатной (для разреза K_2Se_5 —KJ).

Экспериментальные данные

На основе данных дифференциально-термического анализа (ДТА) по кривым второго нагревания построены фазовые диаграммы следующих изученных разрезов.

I. Разрез K_2 Se— K_J . Йодид калия плавится при 680°. Определить температуру плавления селенида калия K_2 Se не удалось. По данным работы [2] $T_{\rm пл} \sim 800$ °, по работе [3] $T_{\rm пл} >$

 $> 700^{\circ}$.

Фазовая диаграмма разреза K₂Se—KJ представлена на рис. 1. ДТА был проведен при десяти различных соотношениях компонентов. На кривых нагревания сплавов K₂Se и KJ наблюдается по два термических эффекта, за исключением сплава, содержащего 50 мол. % KJ. Температуры эффектов соответствуют температурам ликвидуса и эвтектики этих сплавов. Кривые ликвидуса пересекаются в эвтектической точке с координатами 515±5° и приблизительно 50 мол. % KJ. Состав эвтектики

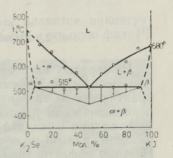


Рис. 1. Фазовая диаграмма разреза K₂Se—KJ тройной системы K—Se—J.

определялся также методом построения треугольника Таммана — результат совпадает с указанным выше. На основе K_2 Se и K_2 образуются твердые растворы, границы растворимости которых определялись построением треугольника Таммана. При эвтектической температуре растворимость K_2 Se в K_2 Se составляет 7—8 мол. %, растворимость K_2 Se в K_2 Se и K_2 Se в K_3 Se около 8 мол. %. Во всех изученных сплавах после затвердевания присутствуют две фазы, т. е. твердый раствор на основе K_2 Se и твердый раствор на основе K_2 Se и твердый раствор на основе K_3

Разрез K₂Se--КЈ можно рассматривать как квазибинарный разрез

тройной системы К-Se-J.

II. Разрез. K_2Se_2 — KJ. Селенид калия K_2Se_2 плавится инконгруэнтно, около 460° он распадается на селенид калия K_2Se и жидкую

фазу [4].

На рис. 2, a, δ приведена фазовая диаграмма разреза K_2Se_2 — K_J , построенная по данным ДТА семнадцати сплавов с различной концентрацией компонентов. Температура ликвидуса для K_2Se_2 понижается начиная с 475°, а для твердого раствора на основе $KJ(\beta)$ — с 680°. Соответствующие кривые пересекаются при $425\pm5^\circ$ и 25 мол. % KJ. При той же температуре начинается вторичная кристаллизация $K_2Se+\beta$ в сплавах, содержащих более 25 мол. % KJ. При $400\pm5^\circ$ у этих сплавов наблюдается эффект, соответствующий нонвариантному перитектическому процессу $L+K_2Se\to K_2Se_2+\beta$. В интервале температур $400-425^\circ$ растворимость K_2Se_2 в KJ составляет 15 ± 3 мол. %. Растворимость определялась построением треугольника Таммана по суммарной величине эффектов при 400 и 425° . В сплавах с содержанием KJ меньше 25 мол. % температура вторичной кристаллизации K_2Se_2 , идущей по перитектической схеме $L+K_2Se\to K_2Se_2+L_1$, повышается от 400 до 440° при уменьшении содержания KJ.

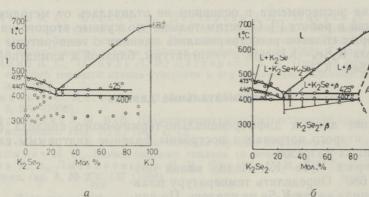


Рис. 2. Фазовая диаграмма разреза K_2Se_2 —KJ тройной системы K—Se—J.

100

На кривых нагревания при температурах ниже 400° наблюдаются еще небольшие эффекты, отмеченные на рис. 2, a, величина которых практически не зависит от соотношения компонентов. Как известно, при перитектическом процессе взаимодействие между первично выпавшими кристаллами и жидкой фазой затруднено, вследствие чего ход кристаллизации сплавов может отличаться от теоретически ожидаемого хода [$^\circ$]. Поэтому эффекты ниже 400° на рис. 2, a можно, вероятно, объяснить тем, что неравновесная кристаллизация сплавов не заканчивается при перитектической температуры, а идет до тройной эвтектической температуры ($\sim 320^\circ$) по схеме $L \rightarrow K_2 Se_2 + K_2 Se_3 + \beta$.

На рис. 2, б приведена предполагаемая фазовая диаграмма разреза K_2Se_2 — K_J в условиях равновесной кристаллизации сплавов. В этом случае затвердевание сплавов данного разреза заканчивается описанной выше нонвариантной перитектической реакцией, т. е. затвердевшие спла-

вы состоят из K₂Se₂ и β.

Разрез K₂Se₂—KJ следует рассматривать как неквазибинарный раз-

рез тройной системы K-Se-J.

III. Разрез K₂Se₄—KJ. Селенид калия K₂Se₄ плавится инконгруэнтно, при 210° он распадается на селенид калия K₂Se₃ и жидкую фазу [4]. Был проведен ДТА десяти сплавов. Фазовая диаграмма разреза K_2Se_4 — K_J приведена на рис. 3. Температуры ликвидуса понижаются от 312° для K_2Se_4 и 680° для K_J до 275° при содержании 12 мол. % K_J . Температуры вторичных кристаллизаций, повышающиеся от 205 до 275° в интервале концентраций до 12 мол. % K_J , соответствуют совместному выделению K_2Se_3 и K_J . В сплавах с большей концентрацией K_J совместное выделение K_2Se_3 и K_J начинается при 275 \pm 3°. Затвердевание всех

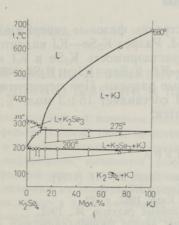


Рис. 3. Фазовая диаграмма разреза K₂Se₄—KJ тройной системы K—Se—J.

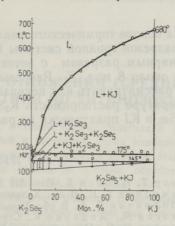


Рис. 4. Фазовая диаграмма разреза K_2Se_5 —KJ тройной системы K—Se—J.

сплавов данного разреза заканчивается при $200\pm3^\circ$ нонвариантным перитектическим процессом $L+K_2Se_3\to K_2Se_4+KJ$. Из построения треугольников Таммана можно заключить, что твердые растворы на основе KJ практически отсутствуют.

Разрез K₂Se₄—KJ следует рассматривать как неквазибинарный раз-

рез тройной системы К-Se-J.

IV. Разрез K₂Se₅—KJ. Селенид калия K₂Se₅ плавится инконгруэнтно, при 195° он распадается на селенид калия K₂Se₃ и жидкую фазу [⁴].

Фазовая диаграмма разреза K_2Se_5 — K_J построена по данным ДТА восемнадцати сплавов и представлена на рис. 4. Температуры ликвидуса понижаются от 205° для K_2Se_5 и от 680° для K_J до $175\pm3^{\circ}$ при 2,5 мол. % K_J . Эффекты ниже кривых ликвидуса соответствуют кристаллизации K_2Se_5 в интервале концентраций до ~ 1 мол. % K_J при 193— 145° и кристаллизации K_2Se_3 + K_J в интервале 1—2,5 мол. % K_J при 145— 175° . В сплавах, содержащих более 2,5 мол. % K_J , при 175° так-

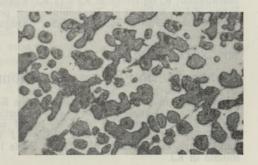


Рис. 5. Микрофотография сплава КJ с 33 мол. % $K_2Se_5 \times 60$.

же кристаллизуется K_2Se_3+KJ . Затвердевание всех сплавов разреза K_2Se_3-KJ заканчивается при $145\pm3^\circ$ по перитектической схеме $L+K_2Se_3\to K_2Se_5+KJ$. На основе треугольника Таммана, построенного по суммарной величине эффектов при 145 и 175° , растворимость K_2Se_5 в KJ практически отсутствует.

В качестве примера затвердевших сплавов приведена микрофотография шлифа, содержащего 67 мол. % КЈ (рис. 5). Наблюдаются темные первичные кристаллы KJ, окруженные светлым полем KJ + K2Se5.

Разрез K₂Se₅—KJ следует рассматривать как неквазибинарный раз-

рез тройной системы K—Se-

Выволы

На основе термического анализа построены фазовые диаграммы четырех разрезов тройной системы K—Se—J. Разрез K₂Se—KJ является квазибинарным разрезом с эвтектикой; растворимость K2Se в KJ и KJ в K₂Se около 8 мол. %. Разрезы K₂Se₂—KJ, K₂Se₄—KJ и K₂Se₅—KJ следует рассматривать как неквазибинарные разрезы. При перитектической температуре растворимость K_2Se_2 в KJ составляет 15 ± 3 мол. %; K_2Se_4 и K₂Se₅ в KJ практически не растворяются.

ЛИТЕРАТУРА

Саэр Т., Коппел Х., Изв. АН ЭССР, Хим. Геол., 20, 141 (1971).

2. Самсонов Г. В., В сб.: Халькогениды, Киев, 1967, с. 6. 3. Оболончик В. А., В сб.: Халькогениды, Киев, 1967, с. 32

4. Хансен М., Андерко К., Структуры двойных сплавов, М., 1962. 5. Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М.—Л., 1947, с. 587.

Институт физики и астрономии Академии наук Эстонской ССР

Поступила в редакцию 3/IV 1971

TIIU SAAR, H. KOPPEL

KAALIUMJODIIDI JA KAALIUMSELENIIDIDE VASTASTIKUSEST MÕJUST

Termilise analüüsi andmetel koostati kolmekomponentse süsteemi K—Se—J nelja lõike olekudiagrammid. Lõige K_2Se —KJ on kvaasibinaarne ja tema komponendid moodustavad eutektikumi; K_2Se_2 lahustub KJ-s ja KJ K_2Se_2 -s umbes 8 mooliprotsenti. Lõiked K_2Se_2 —KJ, K₂Se₄—KJ ja K₂Se₅ ei ole kvaasibinaarsed; peritektilisel temperatuuril lahustub KJ-s 15±3 mooliprotsenti K2Se2, K2Se4 ja K2Se5 niisugusel temperatuuril KJ-s ei lahustu.

TIIU SAAR, H. KOPPEL

INTERACTION OF POTASSIUM IODIDE WITH POTASSIUM SELENIDES

The four phase diagram sections of the K—Se—J system have been determined on the basis of thermal analysis. The K₂Se-KJ section is pseudobinary, and its components form a eutectic; the solubilities of K2Se2 in KJ and KJ in K2Se2 are about 8 mole per cent. The K_2Se_2 —KJ, K_2Se_4 —KJ and K_2Se_5 —KJ sections are not pseudobinary; at peritectic temperature, the solubility of K_2Se_2 in KJ is 15 ± 3 mole per cent, K_2Se_4 and K_2Se_5 are not soluble in KJ.