ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 24 ХИМИЯ \* ГЕОЛОГИЯ. 1975, № 1

https://doi.org/10.3176/chem.geol.1975.1.01

УДК 543.51:547.565.2

# Ю. ЛИЛЛЕ, Сильвия РАНГ, Лууле БИТТЕР

# МАСС-СПЕКТРЫ МЕТИЛОВЫХ ЭФИРОВ АЛКИЛРЕЗОРЦИНОВ

Общие пути распада алкилариловых эфиров под действием электронного удара известны. Так, метиловые (Me) эфиры оксибензола и его метилпроизводных, а также диоксибензолов расщепляются с выделением фрагментов CH<sub>2</sub>O, CHO, CO, CH<sub>3</sub> и H [<sup>1–3</sup>]. Алкильные цепи в ароматических соединениях отщепляются в β-положении по отношению к ядру [<sup>1</sup>]. Однако в литературе мало конкретных примеров спектров Меэфиров алкилфенолов [<sup>4</sup>], в частности алкилрезорцинов [<sup>5</sup>]. В ходе систематического исследования методов синтеза и свойств алкилрезорцинов были получены масс-спектры ряда Ме-эфиров, которые приводятся ниже.

Рассмотрим спектры Ме-эфиров 2-метил-, 2-н-пропил-, 2-н-бутил-, 2-нгексил-, 2-н-нонил-, 5-метил-, 5-н-гептил-, 5-н-децил-, 5-метил-2-н-гексил-, 5-метил-2-н-нонил- и 2-н-гексил-5-н-гептилрезорцина (в табл. 1, 2 и 3 приведены пики, интенсивность которых выше 1% от интенсивности максимального пика).

В спектре I были обнаружены метастабильные ионы с массами 68,4, 80,9, 83,6, 96,3 и 99,6 (обозначены соответственно от  $m_1^*$  до  $m_5^*$ ), что позволяет изобразить расщепление указанных соединений по следующей схеме, объясняющей образование интенсивных пиков с m/e 137, 123, 121, 109, 107, 94, 91, 79 и 77.

Приведенная схема несколько упрощена, поскольку в спектре имеются также ионы с *m/e* М-1 и двухзарядные ионы. Последние обнаруживаются по ионам с *m/e* 75, 75,5, 76 и 76,5 с интенсивностями соответственно 10, 1, 22 и 15%.



Картина распада VI несколько проще по сравнению с распадом I. Доминирует выделение СНО-единицы с образованием интенсивного пика с *m/e* 123 (об этом свидетельствует метастабильный ион с *m/e* 99,6).

-

4

=

Ю. Лилле, Сильвия Ранг, Лууле Биттер

| abnuya |                                       | Λ                                   |                           |                 |     |      |                |         |         |               |                            |           |                      |      |     |       |                  |                                   |                                       |          |       |           |                                       |                                        |                                                                                                       |        |                                           |
|--------|---------------------------------------|-------------------------------------|---------------------------|-----------------|-----|------|----------------|---------|---------|---------------|----------------------------|-----------|----------------------|------|-----|-------|------------------|-----------------------------------|---------------------------------------|----------|-------|-----------|---------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|
| L      | Ha (V)                                |                                     | 1                         | 1,1             | 2,2 | 1,3  | 1              | 1       | 1       | 1 10          | 1                          | 2,3       | 1                    | 11   | 2,2 | 100,0 | 2'6              | 11                                | 1                                     | 1        | 1     |           | 1                                     | 1                                      | 9.1                                                                                                   | 6,0    |                                           |
|        | нилрезорци                            | IV                                  | 1                         | 1,9             | 2,6 | 1,6  | 1,2            | 1       | 1       | 6.4           | 5                          | 2,4       | 1                    | 11   | 1,9 | 100,0 | 8,6              | 11                                | 1,2                                   | 1        | 1     | 11        | 13.4                                  | 1,8                                    | 1                                                                                                     | 1      |                                           |
|        | V) и 2-н-но                           | III                                 | 1                         | 2,4             | 3,5 | 2,0  | 1,5            | 1 0     | 1       | 75            | 21-                        | 3,1       | 1,1                  | 11   | 1,2 | 100,0 | 8,4              | 2.0                               | 2,5                                   | 1<br>0i  | 1     | 17,2      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                                      | 17                                                                                                    | 1      |                                           |
|        | и-гексил- (I)                         | II TO                               | ing i                     | 2,4             | 4,5 | 2,1  | 6.01,8         | -       | 1,2     | 70            | 2                          | 3,3       | 1                    | 1.1  | 1   | 100,0 | 8,4              | 1,2                               | 1                                     | 21,9     | 2,5   | 111       | I II                                  | 4                                      | 1                                                                                                     | J.C.   |                                           |
|        | л- (111), 2-н                         | 037101<br>11934<br>037101<br>037101 | 000                       | 6.4             | 3,3 | 25,0 | 5,1            | 10,9    |         | 1,9           | 9.6                        | 10,0      | 1.1 P                | 1,0  | 3,9 | 10,3  | 0,001            | 10.9                              | TO THE                                | 0 11 0 0 | 1 1 1 | 10 10     |                                       | Den<br>Den<br>Den<br>Den<br>Den<br>Den |                                                                                                       | Par in |                                           |
|        | I), 2-н-бути.                         | alm                                 |                           | 105             | 106 | 107  | 801            | 109     | 115     | 120           | 199                        | 123       | 135                  | 136  | 138 | 151   | 152              | 154                               | 165                                   | 180      | 181   | 194       | 666                                   | 223                                    | 264                                                                                                   | 265    | мат<br>был<br>ген <del>ш</del>            |
|        | I) -кипоqп-н-                         |                                     |                           | 3.5 0           | 2,3 | -    | 1 1 0          | C MAL   |         | 1,5           |                            | M-1<br>MC | E = 1.9 6 0          |      |     |       | 3,2              | 01.9                              | H<br>H<br>H<br>H<br>H<br>H<br>H       | -R. ()   | , H   | 18.7      | 200 14 H                              | 4.0                                    | ин-<br>101<br>6 ни<br>3,6                                                                             |        | Б-м<br>при<br>свм<br>80,9                 |
|        | (1), 2.                               | n äki                               |                           |                 |     |      |                |         |         |               |                            |           |                      |      |     |       |                  |                                   |                                       |          |       |           |                                       |                                        |                                                                                                       |        |                                           |
|        | етил-                                 | IV                                  | 13 10<br>13 10<br>14 10   | 1.5             | 110 | 1    | X II           | 1       | 1       | 1,0           | K0                         |           | 2,8                  |      |     | A LEO | 4,1              | 2,2<br>1.6                        | flo<br>1                              |          | OI R  | 906       | 1 9                                   | 4.7                                    | IT,                                                                                                   | -      | 109                                       |
|        | эфиров 2-метил-                       | III IV                              | S C A                     | 1.8 1.5         |     | 1    | 2,2            |         | 1       | 1,0 1,0       |                            |           | 2,8                  |      |     |       | 6,7 4,1          | 2,3 2,2<br>2,3 1,6                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |       | 20.6 9.08 | 2.8 1.9                               | 6,1 4,7                                | 10<br>11<br>10<br>11<br>10<br>10<br>10                                                                |        | 201<br>1 R2<br>2 T R2<br>2 T R1<br>2 T R1 |
|        | метиловых эфиров 2-метил-             | III III                             | usy<br>si c<br>usy<br>tar | 1.2 1.8 1.5     |     |      | 3,4 2,2 -      | 1,3     | 112     | - 1,0 1,0     |                            |           | 6,4 2,8              |      |     |       | 8,9 6,7 4,1      | 2,4 2,3 1,6<br>2,4 2,3 1,6        |                                       |          |       |           | 3.4 2.8 1.9                           | 7.3 6.1 4.7                            | о<br>Т<br>я<br>й<br>я<br>й<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я<br>я |        | 201<br>r RO<br>010<br>010                 |
|        | асс-спектры метиловых эфиров 2-метил- |                                     |                           | 3.2 1.2 1.8 1.5 | 2.4 | 4,2  | 12,8 3,4 2,2 - | 8,0 1,3 | 5,8 1,2 | 2,4 - 1,0 1,0 | 2(3) 45 215 1319 - 215 2 2 | 2,0       | 13,2 6,4 - 2,8 - 2,8 | 10,6 | L3  | 2.8   | 27,6 8,9 6,7 4,1 | 10,9 4,0 3,0 2,2 17,3 2,4 2,3 1,6 |                                       |          |       | 9,6       | 4.5 3.4 2.8 1.9                       | 5,8 7,3 6,1 4,7                        | 8,7                                                                                                   | 1,9    |                                           |

Таблица 2

Масс-спектры метиловых эфиров 5-метил- (VI), 5-и-гептил- (VII), 5-и-децил- (VIII), 5-метил-2-и-гексил- (IX), 5-метил-2-и-нонил- (X) и

|                      | IX                       | 2,6                                       | 1,0                     | 1,2    | 1                       | 1,6          | 2,6                   | 3,7      | 5,0     | 3,8                     | 1,5             | 1,7    | 4     | 1,4     | 1,1             | 2,3       | 2,5                                                     | 11,6          | 2,0                 | 2.1   | 2,9                      | 1               | 1.6                      | 1,2     | 1,6  | 2,0     | 8,8   | 6,9                      | 1.1              | 1,3     | 1,5                                   | 2,8         | 8,5   | 2,5                        | 3,5             |
|----------------------|--------------------------|-------------------------------------------|-------------------------|--------|-------------------------|--------------|-----------------------|----------|---------|-------------------------|-----------------|--------|-------|---------|-----------------|-----------|---------------------------------------------------------|---------------|---------------------|-------|--------------------------|-----------------|--------------------------|---------|------|---------|-------|--------------------------|------------------|---------|---------------------------------------|-------------|-------|----------------------------|-----------------|
|                      | х                        | 3,1                                       | 1                       | 1      | 1                       | 1            | 1                     | 1        | 2,5     | 1,3                     | 1,1             | 1      | 1     | weine - |                 | a' Tobara | IN TIGORIA                                              | 3,3           | and a bear          | 1     | 1                        | 1               | 1                        | 1       | 0,+- | Ĩ       | 18    | 1,8                      | 1                | 1       | 1                                     | 1           | 100,0 | 8,3                        | Thornorth       |
|                      | IX                       | 3,7                                       | 1                       | 1      | 1                       | 1            | 1                     | 1        | 3,3     | 1,6                     | 1,1             | 1      | 1     | 60      | 1               | 110000    | 1                                                       | 3,9           | 1 TT 1 TT 1         | 1     | 1                        |                 | 1                        | ay<br>I | 1    | 1       | 1     | 1,6                      | 1                | 1       | 1                                     | 10          | 100,0 | 9,5                        | 1               |
| TB                   | VIII                     | 1,4                                       | 1,4                     | 2,1    |                         |              | 1                     | 1        | 1       | 5,0                     | 1,9             | 2,8    | 1     | 1       |                 | Abr       | 1                                                       | 1,6           |                     | 2,4   | 1,5                      | 1,9             | 1                        | 1       | 1    | t       | 16,8  | 100,0                    | 8,9              | 1       | 1                                     | 1,5         | 13,7  | 3,2                        | 1               |
| TR K                 | VII                      | 1,3                                       | 1,3                     | 2,2,   |                         | -            | 1                     | 1        | 1       | 4,9                     | 2,0             | 3,1    | 1     | 1       | 1               | 1         | 1                                                       | 1,3           | 1                   | 2,6   | 1,4                      | 1,4             | 1                        | 1       | 1    | 1       | 13,6  | 100,0                    | -7,9             | 1       | 1                                     | 1           | 14,5  | 3,2                        | 1               |
| (II) (II)            | VI                       | 9,3                                       | 7,2                     | 15,2   | 1,2                     |              | 1                     | 1,1      | 1       | 10,1                    | 12,1            | 47,1   | 3,9   | 1       | T               | 1         | 1                                                       | 1,1           | 1                   | 3,9   | T                        | 1               | 1                        | 1       | 1    | 1       | 4,4   | 100,0                    | 8,8              | -       | 1                                     |             | T     | 1,3                        | 1 1             |
| илрезорци            | m/e                      | 107                                       | 108                     | 109    | 110                     | 115          | 117                   | 119      | 120     | 121                     | 122             | 123    | 124   | 131     | 132             | 133       | 134                                                     | 135           | 136                 | 137   | 138                      | 139             | 147                      | 148     | 149  | 150     | 151   | 152                      | 153              | 161     | 163                                   | 164         | 165   | 166                        | 177             |
| 2 1                  |                          |                                           |                         |        | _                       |              |                       |          |         |                         | _               | _      | _     | _       |                 | _         | _                                                       |               | _                   | _     |                          | _               |                          |         | _    | _       | _     | _                        | _                | _       | _                                     | _           |       |                            |                 |
| ил- 5-н-гепт         | IX                       | 1 13                                      | 5.3                     | T.I.I. | 8.2                     | 1            | 1.67                  |          | 21      | 5,3                     | 2,7             | - 02   | 1     | 1       | 1,4             | -         | . 1.6                                                   | 1,5           | Hunda-              | 1     | 3,0                      | 1,6             | 3,1                      | 1       | 1    | 1       | 1     | 7,2                      | 1,6              | 1,6     | 1                                     | 1.8         | 2,0   | 16,3                       | 2,0             |
| 2-н-гексил- 5-н-гепт | X XI                     | 1.8 I I I I I I I I I I I I I I I I I I I | 2.1 5.3                 | 1.1.1  | 2,1 8,2                 |              | 167 20 100            | SI TO OT | and and | 1,1 5,3                 | 1,4 2,7         | 10 - R | 1     |         | - 1,4           |           | Caol-mag (yr1,6                                         | - 1,5         | undu <del>t</del> 1 | 1     | 1,2 3,0                  | - 1,6           | 3,3 3,1                  | 1       | 1    | 1       | 1     | 3,4 7,2                  | - 1,6            | - 1,6   | 1                                     | - 1,8       | - 2,0 | 12,8 16,3                  | 1,1 2,0         |
| 2-н-гексил- 5-н-гепт | IX X XI                  |                                           | 2.8 2.1 5.3             |        | 1.6 2,1 8,2             | C11- 11- 11- |                       |          |         | 1,2 1,1 5,3             | - 1,4 2,7       | N      | 1     | 1       | 1,4             |           | Anathabcaolman (yrg1.6                                  | + - 1,5       | 1                   | 1 1   | 2,7 1,2 3,0              | 1,6             | 4,0 3,3 3,1              | 1       | 1    | 1 1     | 1     | 4,5 3,4 7,2              | 1,6              | 1,6     | 1                                     | 1.1 - 1.8   | - 2,0 | 17,2 12,8 16,3             | 1,5 1,1 2,0     |
| 2-н-гексил- 5-н-гепт | VIII IX X XI IIIN        |                                           | 4.9 2.8 2.1 5.3         |        | 4,2 1,6 2,1 8,2         |              |                       |          |         | 2,9 1,2 1,1 5,3         | 1,9 - 1,4 2,7   |        | 1 1 1 | 1 1     | 1,8 1,4         |           | ad-br pyraminubcaol-nus (yrill6                         | 1,4 1,5       | 1,3                 | 1 1 1 | 4,3 2,7 1,2 3,0          | 2,5 1,6         | 2,4 4,0 3,3 3,1          |         |      | 1 1     | 1 1 1 | 5,2 4,5 3,4 7,2          | 1,2 1,6          | 1,6     | 1 1                                   | - 1.1 - 1.8 | 2,0   | 2,1 17,2 12,8 16,3         | - 1,5 1,1 2,0   |
| 2-н-гексил- 5-н-гепт | VII VIII IX X XI XI      |                                           | 4.4 4.9 2.8 2.1 5.3     |        | 2,0 4,2 1.6 2,1 8,2     |              | NT N TO TO TO TO TANK |          |         | 2.5 2.9 1,2 1,1 5,3     | - 1,9 - 1,4 2,7 |        | 1 1 1 | 1 1 1   | 2,4 1,8 1,4     |           | out- Incad-by para - nubcao - nus (yr1.6                | - 1,4 1,5     |                     | 1 1 1 | 4,7 4,3 2,7 1,2 3,0      | 3,0 2,5 1,6     | 2,0 2,4 4,0 3,3 3,1      | 1 1     |      | 1 1     | 1 1 1 | 5,4 5,2 4,5 3,4 7,2      | 1,2 1,2 1,6      | 1,6     | I I I I I I I I I I I I I I I I I I I | 1.1 - 1.8   | 2,0   | 2.3 2.1 17,2 12,8 16,3     | 1,5 1,1 2,0     |
| 2-н-гексил- 5-н-гепт | VI VII VII IX X XI XI XI | 3.9                                       | 5.2 4.4 4.9 2.8 2.1 5.3 |        | 2,1 2,0 4,2 1,6 2,1 8,2 | 3.6 1 1 1    | 9,3                   | 7,2      | 1'0     | 2,1 2,5 2,9 1,2 1,1 5,3 | 1,9 - 1,4 2,7   | 1,5    | 4,6   | 1,7     | 9,8 2,4 1,8 1,4 | II,1      | 2,00 conduct _ purchart-bar search material-mar (yrg1,6 | 3,6 - 1,4 1,5 |                     | 2,1   | 20,6 4,7 4,3 2,7 1,2 3,0 | 9,6 3,0 2,5 1,6 | 17,5 2,0 2,4 4,0 3,3 3,1 | 1,5     | 2,8  | 1.3 1 1 | 1.4   | 23.7 5,4 5,2 4,5 3,4 7,2 | 11.1 1,2 1,2 1,6 | 5,4 1,6 | 6.7                                   | 1.1 - 1.8   | 2,0   | 2.1 2.3 2.1 17,2 12,8 16,3 | 2,1 1,5 1,1 2,0 |

5

| Продолжение табл. 2 | IX X XI IIIA | — — 100,0   — — 100,0   — — 17,9   8,9 — 7,3   1,6 — 1,4   — — 1,6   — — 1,6   — — 2,1   8,9 — 7,3   1,6 — 1,4   — — 1,6   — — 1,6   — — 1,6   — — 1,6   — — 2,5   — — 2,5   — 9,6   — 0,5   — 0,6   0,5 … | туры — денолы, черные фигуры —<br>Ме-эфиры, Х — ТМС-эфир (5-изо-<br>мер). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 12 nc IX X X X X X X X X X X X X X X X X X X |
|---------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| - 23                |              |                                                                                                                                                                                                            | 16-                                                                       | 4 8 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000000000000000000000000000000000000         |
| 111                 | m/e          | 249<br>250<br>251<br>279<br>279<br>320<br>321<br>321<br>321<br>321<br>321                                                                                                                                  |                                                                           | A CALLER OF CALL | wite<br>Rabesobiii<br>-M-Yeiffing-             |
| 20                  | IX           | 1,6<br>1,2<br>1,2<br>1,2<br>9,7<br>1,8<br>1,1<br>1,1                                                                                                                                                       | 1                                                                         | 6,7<br>2,0<br>1,4<br>1,4<br>1,7<br>1,7<br>1,1<br>1,1<br>1,3<br>1,3<br>1,3<br>4,2<br>1,3<br>4,2<br>1,3<br>1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3<br>3.3<br>3.9<br>4- (AII) 2                |
| 1,1                 | x            |                                                                                                                                                                                                            | mle                                                                       | 282<br>283<br>295<br>296<br>309<br>311<br>337<br>333<br>339<br>333<br>339<br>339<br>339<br>339<br>351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 353<br>354<br>354<br>354-1680.08               |
| 12                  | IX           | 1,9                                                                                                                                                                                                        |                                                                           | 1,3<br>1,3<br>1,3<br>1,3<br>1,3<br>1,3<br>1,0<br>1,0<br>2,7<br>2,7<br>2,0<br>2,0<br>100,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3<br>1,2<br>16,7                             |
| -                   | VIII         | 2,90<br>2,90                                                                                                                                                                                               | le l                                                                      | 8 8 8 9 12 8 8 8 12 12 8 8 8 10 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81 AUT 8                                       |
| -                   | NII          |                                                                                                                                                                                                            |                                                                           | 21<br>21<br>21<br>22<br>22<br>22<br>23<br>24<br>24<br>24<br>24<br>24<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALL 27<br>26<br>08 Proc. 940                   |
| 12                  | <u> </u>     |                                                                                                                                                                                                            |                                                                           | 9,8<br>5,8<br>5,7<br>1,3<br>6,7<br>1,3<br>6,7<br>1,3<br>1,1<br>1,1<br>1,1<br>1,2<br>1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,7<br>6,7<br>1,1                              |
| 201                 | m/e          | 178<br>179<br>191<br>194<br>194<br>235<br>235<br>237<br>237<br>237                                                                                                                                         | m/e                                                                       | 41<br>44<br>45<br>45<br>55<br>56<br>59<br>73<br>73<br>73<br>74<br>71<br>91<br>10<br>119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133<br>147<br>148<br>2010 - CHOR               |

6

Ю. Лилле, Сильвия Ранг, Лууле Биттер



В спектре также содержатся указанные выше двухзарядные ионы.

В случае эфиров с длинными боковыми цепями господствующим является  $\beta$ -разрыв этих цепей относительно бензольного ядра. Цепь в 2положении отщепляется в виде (CH<sub>2</sub>)<sub>*n*-2</sub>CH<sub>3</sub> с образованием иона массой 151. Для соединений II, III, IV, V, IX, X и XI наблюдались соответствующие метастабильные ионы с *m/e* 126,8, 117,5, 102,6, 86,3, 115,4, 98,0 и 193,9. Цепь в 5-положении отщепляется в виде (CH<sub>2</sub>)<sub>*n*-1</sub> с мигрированием атома водорода. В результате образуется ион с *m/e* 152 (в спектре VII наблюдали соответствующий метастабильный ион с *m/e* 97,9). В спектре XI наблюдались оба типа разрыва боковых цепей соответственно их положению в молекуле.

Такое же поведение алкильных цепей наблюдается в спектре триметилсилилового (TMC) эфира 5-н-гептилрезорцина (XII, табл. 3) и в спектрах алкилрезорцинов (опубликовано ранее [<sup>6</sup>]). Это совпадает с известными данными, согласно которым при накоплении в бензольном ядре электронодонорных *мета*-заместителей увеличивается вероятность миграции атома водорода при β-разрыве. Это явление объясняется стабилизацией образующихся при β-разрыве ионов с циклогексадиеновой структурой.



Характерной чертой спектров 5-изомеров с длинной цепью (VII, VIII, XII) является образование слабых пиков с четным значением m/e, равным M-14*i*, где  $i=1 \div (n_{\rm C}-2)^*$ . Эти пики образуются в результате отрыва CH<sub>2</sub>-единиц, протекающего с миграцией атома H. Они сопровождаются пиками с нечетным значением m/e, образующимися при разрыве без миграции водородных атомов. В основном доминируют пики с четным значением m/e (среди них наиболее интенсивные пики с m/e 194 для VII и VIII, 310 для XII и 166 для XIII). Но характерно, что при  $\gamma$ -разрыве, а также при разрыве связи между вторым и третьим атомами углерода, считая от свободного конца цепи, доминируют пики с нечетным значением m/e (среди них очень интенсивные пики с m/e, соответствующие  $\gamma$ -разрыву).

В случае 2-изомеров суммарная интенсивность указанных пиков примерно в 3 раза ниже.

Образование этих ионов может быть объяснено следующими структурами:

\* n<sub>c</sub> — число атомов углерода в боковой цепи.



Для VII предпочтительно m=2, а для VIII m=3 и m=6.

ТМС-эфирам характерны более «чистые» спектры по сравнению с Ме-эфирами. Возможно, что это обусловлено выделением больших Si(CH<sub>3</sub>)<sub>3</sub> фрагментов (характерный ион с *m/e* 73, интенсивность пика которого составляет 45% от интенсивности пика с *m/e* 268, соответствующей β-разрыву), сопровождаемым значительным понижением энергии молекулярного иона. Характерный пик с *m/e* M-15, по всей вероятности, обусловлен отрывом CH<sub>3</sub>-единицы от той же функциональной группы [7].

Стабильность молекулярного иона  $W_M$ , определяемая как интенсивность пика молекулярного иона по отношению к полному ионному току, в пределах  $n_C = 1 \div 13$  зависит только от длины цепи и резко падает при увеличении последней (рис. 1). Отсутствие зависимости от положения цепи объясняется резонансными структурами, приведенными выше.

## Экспериментальная часть

Синтез изученных эфиров описан в [8]. Спектры регистрировались на приборе МХ-1301 при энергии ионизирующих электронов 50 эв, токе эмиссии катода 1,5 ма, ускоряющем напряжении 2,2 кв и температуре узлов прибора 200° С.

#### Заключение

Описаны масс-спектры ряда эфиров (в основном метиловых) алкилрезорцинов и показано, что общие закономерности в изученных спектрах согласуются с известными корреляциями, установленными для производных бензола.

# ЛИТЕРАТУРА

- Будзикевич Г., Джерасси К., Уильямс Д., Интерпретация масс-спектров органических соединений, М., 1966, с. 198.
- 2 Barnes C. S., Occolowitz I. L., Austr. J. Chem., 16, 219 (1963).
- 3. Pelah Z., Wilson I. M., Ohashi M., Budzikiewicz H., Djerassi C., Tetrahedron, 19, 2233 (1963).
- 4. Atlas of Mass Spectral Data, 1-3., Interscience Publishers, 1969.
- 5. Occolowitz I. L., Anal. Chem., 36, 2177 (1964).
- 6. Бродский Е. С., Лилле Ю. Э., Лукашенко И. М., Биттер Л. А., Полякова А. А., ЖОрХ, 6, 2096 (1970).
- 7. Smith G. G., Djerassi K., Org. Mass. Spectrom., 5, 487 (1971).
- 8. Лилле Ю. Э., Биттер Л. А., Кундель Х. А., Тр. НИИ сланцев, вып. 19, Таллин, 1973.

НИИС Институт сланцев Институт химии Академии наук Эстонской ССР Поступила в редакцию 26/VI 1973

# J. LILLE, Silvia RANG, Luule BITTER

## ALKÜÜLRESORTSIINIDE METÜÜLEETRITE MASSISPEKTRID

Kirjeldatakse rea alküülresortsiinide metüüleetrite massispektreid ja sedastatakse, et need alluvad bensooli derivaatide spektrite kohta kehtivatele üldistele seaduspärasustele.

#### J. LILLE, Silvia RANG, Luule BITTER

### MASS SPECTRA OF ALKYL RESORCINOL METHYL ETHERS

A number of mass spectra of alkyl resorcinol methyl ethers are described. It is shown that the general features of the spectra correspond to the common rules valid for benzene derivatives.