ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 ХИМИЯ * ГЕОЛОГИЯ. 1974. № 1

https://doi.org/10.3176/chem.geol.1974.1.03

УДК 541.123.4: 541.571.9

Л. МЭЛДЕР, Х. ТАМВЕЛИУС

ОПРЕДЕЛЕНИЕ КОНСТАНТ ОБРАЗОВАНИЯ Н-СВЯЗИ МЕЖДУ ФЕНОЛАМИ И СЛОЖНЫМИ ЭФИРАМИ ПО ДАННЫМ РАВНОВЕСИЯ ЖИДКОСТЬ—ЖИДКОСТЬ

В [¹] авторами предложен метод для предсказания коэффициентов распределения протонодонорного вещества А между протоноакцепторным растворителем В и водой по параметрам растворимости и константе образования Н-связи между А и В в неполярном растворителе. При проверке метода на примере распределения одноатомных фенолов между алифатическими простыми эфирами и водой найдено удовлетворительное согласие теории и эксперимента. В настоящей работе сделана попытка использовать теоретические соображения, изложенные в [¹], для расчета констант образования Н-связи между фенолами и сложными эфирами по данным межфазового распределения.

Связь Кав с коэффициентом распределения

Из уравнения (4) в [1] после несложного преобразования получим для константы образования Н-связи между фенолом и протоноакцепторным растворителем ($K_{AB} \equiv a_{AB(B)}/a_{A(B)} \cdot a_{B(B)}$)

$$K_{AB} = (P_A/K_A - 1)\gamma_{AB(B)}/\gamma_{A(B)},$$
 (1)

где $P_A \equiv (x_{A(B)} + x_{AB(B)})/x_{A(B)}$ — суммарный коэффициент распределения фенола A между протоноакцепторным растворителем B и водой, $K_A \equiv \equiv x_{A(B)}/x_{A(B)}$ — коэффициент распределения не связанного в комплекс мономера A, х — мольная доля, а — активность, γ — коэффициент активности, индексы $_{A, B}$ и $_{AB}$ относятся, соответственно, к веществам A, B и соединению AB, индексы $_{(B)}$ и $_{(B)}$ — к фазам B и воды.

Как показано в [¹], растворы фенолов в протоноакцепторных растворителях при бесконечном разбавлении можно рассматривать как регулярные трехкомпонентные (A + AB в B), предполагая, что $V_{AB}{\cong}V_A + V_B$ и $\delta_{AB}{\cong}\frac{V_A}{V_{AB}}$ $\delta_A + \frac{V_B}{V_{AB}}$ δ_B (V — молярный объем, δ — параметр раст-

воримости).

В этом случае при $x_{A(B)} \to 0$ и $x_{AB(B)} \to 0$

$$\ln \gamma_{A(B)} = \ln \frac{V_A}{V_B} + \left(1 - \frac{V_A}{V_B}\right) + \frac{V_A}{RT} \left(\delta_A - \delta_B\right)^2 \tag{2}$$

И

$$\ln \gamma_{AB(B)} = \ln \frac{V_{AB}}{V_{B}} + \left(1 - \frac{V_{AB}}{V_{B}}\right) + \frac{V_{AB}}{RT} (\delta_{AB} - \delta_{B})^{2}.$$
 (3)

К_А определяется согласно уравнению (5) в [¹], если в качестве параметра растворимости воды использовать эмпирическое значение, учитывающее фактическое отклонение водной фазы от регулярности.

Таким образом, K_{AB} можно найти по экспериментальным значениям P_A, если известны параметры растворимости и молярные объемы A, B и

водной фазы.

Экспериментальная часть и обработка результатов

Коэффициенты распределения фенолов при бесконечном разбавлении (табл. 1) определялись по методике, описанной в [2]. Температуру в опытах поддерживали $20\pm1^{\circ}$ С. Как правило, результаты параллельных опытов не различались больше, чем на 2-3%.

Таблица 1 ${\bf P_A} \ \ {\bf при} \ \ {\bf pаспределении} \ \ {\bf фенолов} \ \ ({\it м∂/м∂}) \ \ {\bf между} \ \ {\bf сложными}$ эфирами и водой при 20° C

Сложный эфир	V _В , см ³ /моль	Фенол	м-Кре- зол	п-Кре- зол	3,4-Кси- ленол	3,5-Қси ленол
н-Бутилацетат	131,8	384	1031	1034	2348	2618
н-Амилацетат	148,9	399	1075	1136	2380	ALLES TOLL
изо-Амилацетат	149,2	369	1018	1052		-
н-Пропилпропионат	131,8	361	989	995	2165	2421
н-Бутилпропионат	148,7	331	834	829	1779	
изо-Амилпропионат	165,8	303	834	836	1808	2052
н-Октилпропионат	215,5	349	967	980	2057	2201
Этилбутират	132,2	367	988	1013	2201	2527
н-Пропилбутират	149,1	338	900	903	1969	2176
н-Бутилбутират	165,8	322	881	893	1987	2107
изо-Бутилбутират	167,3	290	821	817	1686	1848
изо-Амилбутират	182,9	279	741	734	1624	1877
Этилизовалерат	150,4	312	818	823	1819	2028

Фенолы перед использованием очищались по методике, описанной в [2]. Сложные эфиры несколько раз промывались насыщенными растворами двууглекислого и хлористого натрия, а затем ректифицировались. Неполярные растворители, использованные для определения параметров растворимости ксиленолов, очищались способами, предложенными в [3].

Параметры растворимости сложных эфиров (табл. 2) рассчитывали по $[^4]$ из теплот испарения при 20° , полученных по уравнению Риделя-Планка-Миллера и корреляции Ватсона $[^5]$ из критических параметров. $T_{\kappa p}$ и $p_{\kappa p}$ находили методом Герцога $[^6]$ по парахору и температуре кипения. Парахор рассчитывали по $[^7]$. За исключением бутилформиата, величины Δ $H_{\rm исп}$, полученные при $t_{\kappa un}$, хорошо согласуются с имеющимися литературными данными (для 21 эфира среднее отклонение $1,70\,\%$, максимальные +2,71 и $-2,89\,\%$). Это дает право предполагать, что параметры растворимости эфиров определены с точностью в среднем $\pm 0,9\,\%$.

Для фенола и крезолов использовали значения δ_A и δ_B , найденные ранее в [2]. Для определения δ_A и δ_B для ксиленолов проводились специальные опыты экстракции этих фенолов растворителями, не образующими с фенолами Н-связи. Результаты расчета δ_A и δ_B из экспериментальных данных по методике, изложенной в [2], приводятся в табл. 3.

Из данных табл. 1 явствует, что при любом экстрагенте соотношение значений Р_А для отдельных фенолов почти постоянно: крезолы извлекаются из воды в среднем в 2,7, 3,4-ксиленол — в 5,9 и 3,5-ксиленол —

Таблица 2

Теплоты испарения ($\Delta H_{\text{исп}}$, $\kappa a n/moль$) и параметры растворимости (δ_B , ($\kappa a n/c m^3$)0,5) при 20° С для сложных эфиров R — С O

R'	R=I	R=H-		R=CH ₃ -		$R = C_2H_5 -$		R=C ₃ H ₇ -	
	ΔНисп	δв	ΔНисπ	δ_{B}	ΔНисп	$\delta_{\rm B}$	ΔНисп	$\delta_{\rm B}$	
CH ₃ —	6718	9,96	7634	9,35	8500	9,07	9394	8,80	
C ₂ H ₅ —	7532	9,30	8406	8,94	9284	8,72	10220	8,54	
C ₃ H ₇ —	8551	9,04	9367	8,74	10290	8,58	11170	8,42	
(CH ₃) ₂ CH —	8089	8,65	8934	8,44	9776	8,28	10680	8,16	
C ₄ H ₉ —	9544	8,85	10390	8,63	11250	8,47	12160	8,36	
(CH ₃) ₂ C ₂ H ₄ —	9250	8.64	10030	8,42	10930	8,31	11890	8,22	
C ₅ H ₁₁ —	10540	8,71	11380	8,52	12170	8,35	13140	8,29	
(CH ₃) ₂ C ₃ H ₆	10290	8,60	11110	8,40	12000	8,30	12890	8,20	
C ₈ H ₁₇ —	13080	8.50	13760	8,34	15320	8,27	15700	8,22	

 Π р и м е ч а н и е. Для этилизовалерата $H_{\text{исп}}$ =10860 κ aл/моль, δ_{B} =8,27 $(\kappa$ aл/см³) 0,5

Таблица 3

Значения ба и бв для фенолов

Фенол	Молярный объем при 20° С (V _A), см ³ /моль	δ _A , (кал/см³) ^{0,5}	$\delta_{\rm B}$, $(\kappa \alpha \Lambda/c M^3)^{0.5}$	
Фенол	87,7	12,60±0,14	19,0±0,21	
м-Крезол	104,6	$12,24\pm0,10$	$19,0\pm0,15$	
п-Крезол	104,5	$12,23\pm0,09$	$19,0\pm0,14$	
3,4-Ксиленол	118,6	$11,32 \pm 0,07$	$18,05\pm0,11$	
3,5-Ксиленол	120,1	$11,30\pm0,07$	$18,05\pm0,11$	

в 6,6 раза лучше фенола. Такая же закономерность наблюдается для K_A . Обычно значения P_A и K_A располагаются в порядке уменьшения длины углеводородных радикалов R и R' в сложном эфире RCOOR', хотя указанная закономерность проявляется менее отчетливо.

Корреляция между Ig К_{АВ} и структурой А и В

Одним из факторов, определяющих межфазовое распределение, является образование Н-связи между распределяемым веществом и протоноакцепторным растворителем в органической фазе. Естественно, что равновесие этой реакции также должно зависеть от строения фенола и сложного эфира, участвующих в реакции комлексообразования. Поэтому в настоящей работе пытались найти зависимость между Кав, рассчитанной из экспериментальных значений Ра по уравнению (1), и структурой взаимодействующих веществ.

Действительно, регрессионный анализ данных табл. 4 на ЭВМ показал, что значения $\lg K_{AB}$ хорошо коррелируют, с одной стороны, с полярными константами σ^* заместителей R и R' в сложном эфире RCOOR' (σ^* взяли из $[^8]$), и, с другой стороны, с константой взаимодействия данного фенола с водой, количественно характеризующейся величиной ($\delta_B - \delta_A$)². Путем минимизации дисперсии значений $\lg K_{AB}$ нашли коэффициенты b

корреляционного уравнения

Таблица 4

Ig $K_{\rm AB}$ комплексов фенолов со сложными эфирами при 20° C, рассчитанные из коэффициентов распределения при бесконечном разбавлении

Сложный эфир	Фенол	м-Крезол	п-Крезол	3,4-Кси- ленол	3,5-Кси ленол
н-Бутилацетат	1,239	1,126	1,112	1,152	1,154
н-Амилацетат	1,258	1,159	1,168	1,184	THE STREET
изо-Амилацетат	1,247	1,160	1,165	to teaming u	THE POST PRINTED
ч-Пропилпропионат	1,223	1,119	1,112	1,130	1,132
ч-Бутилпропионат	1,187	1,059	1,041	1,066	TOWN TOWN
изо-Амилпропионат	1,164	1,079	1,071	1,109	1,120
4-Октилпропионат	1,177	1,104	1,094	1,149	1,135
Этилбутират	1,237	1.132	1,128	1,145	1,161
ч-Пропилбутират	1,207	1,106	1,092	1,123	1,123
ч-Бутилбутират	1.180	1,091	1,087	1,137	1,118
изо-Бутилбутират	1,160	1,094	1,065	1,096	1,092
изо-Амилбутират	1.129	1.034	1,021	1,076	1,096
Этилизовалерат	1,199	1,105	1,092	1,125	1,128

$$\lg K_{AB} = b_0 + b_1 \sigma_R^* + b_2 \sigma_{R'}^* + b_3 [b_4 - (\delta_B - \delta_A)^2]. \tag{4}$$

При уровне достоверности 95%* они имеют следующие значения: $b_0\!=\!1,\!4685$ ($\pm0,\!0058$), $b_1\!=\!0,\!6476$ ($\pm0,\!0183$), $b_2\!=\!1,\!7194$ ($\pm0,\!0713$), $b_3\!=\!0,\!01904$ ($\pm0,\!00038$), $b_4\!=\!40,\!96$.

Нетрудно убедиться, что при таком выборе входных параметров корреляционного уравнения коэффициент b_0 представляет собой $\lg K_{AB}$ для системы фенол — метилацетат, а b_4 — значение $(\delta_B - \delta_A)^2$ для фенола.

Не было обнаружено непосредственной связи между $\lg K_{AB}$ и пространственными константами (E_s) заместителей R и R'. Явно не имеется также корреляции между $\lg K_{AB}$ и константами Γ аммета заместителей бензольного ядра в молекуле фенола. Последнее обстоятельство, по-видимому, объясняется тем, что склонность фенолов к образованию H-связи вообще мало зависит от M- и M-замещения, не приводящего к пространственным препятствиям.

По нашему мнению, константы образования Н-связи, рассчитанные по уравнению (4), могут использоваться также для предсказания коэффициентов распределения других одноатомных фенолов (за исключением o-замещенных) между сложными эфирами и водой, если для них известны $\delta_{\rm A}$ и $\delta_{\rm B}$.

Выводы

- 1. Предложен метод расчета констант образования Н-связи между фенолами и сложными эфирами по данным распределения фенолов в двухфазной системе эфир—вода.
- 2. На основании экспериментальных данных найдено корреляционное уравнение, связывающее константу образования Н-связи с полярными константами заместителей в сложном эфире и константой взаимодействия фенола и воды.

^{*} Стандартная ошибка s_b соответственно: $s_{b_0}\!=\!0,\!0228,$ $s_{b_1}\!=\!0,\!0715,$ $s_{b_2}\!=\!0,\!2786,$ $s_{b_3}\!=\!0,\!0015,$

ЛИТЕРАТУРА

- 1. Мэлдер Л., Тамвелиус Х., Изв. АН ЭССР, Хим. Геол., 22, 26 (1973). 2. Мэлдер Л., Тамвелиус Х., Изв. АН ЭССР, Хим. Геол., 21, 204 (1972). 3. Вайсбергер А., Проскауер Э., Риддик Дж., Тупс Э., Органические раст-
- Вайсбергер А., Проскауер Э., Риддик Дж., Тупс Э., Органические растворители, М., 1958.
 Hildebrand J. H., Scott R. L., The solubility of nonelectrolytes, 3-rd Ed., Dover, New York, 1964.
 Рид Р., Шервуд Т., Свойства газов и жидкостей, Л., 1971.
 Неггод R., Ind. Engng Chem., 36, 997 (1944).
 Меіssner Н. Р., Chem. Engng Progr., 45, 149 (1949).
 Справочник химика, 3, М.—Л., 1964.

Таллинский политехнический институт

Поступила в редакцию 3/XI 1972

L. MÖLDER, H. TAMVELIUS

FENOOLIDE JA ESTRITE VAHELISE VESINIKSIDEME TASAKAALUKONSTANTIDE ARVUTAMINE VEDELIKU-VEDELIKU TASAKAALUST

Esitatakse meetod fenoolide ja estrite vahelise vesiniksideme tasakaalukonstandi (K_{AB}) arvutamiseks fenoolide jaotuskoefitsientidest estrite ja vee vahel. Antakse korrelatsioonivõrrand, mis seob K_{AB} estri struktuuri ning fenooli ja vee vahelise interaktsiooni konstandiga.

L. MÖLDER, H. TAMVELIUS

CALCULATION OF HYDROGEN-BONDING EQUILIBRIUM CONSTANTS OF PHENOLS TO ESTERS FROM THE LIQUID-LIQUID EQUILIBRIUM

A method for calculating of H-bonding equilibrium constants (K_{AB}) of some phenols to aliphatic esters from the partition data of phenols between esters and an aqueous solution has been proposed. The constants K_{AB} have been correlated with substituent constants of esters and with interchange energy density for the water-phenol pair by the

 $lgK_{AB} = b_0 + b_1\sigma_R^* + b_2\sigma_{R'}^* + b_3[b_4 - (\delta_b - \delta_A)^2]$, where σ_R^* and $\sigma_{R'}^*$ are Taft's

 σ^* values for R and R' of the esters RCOOR', δ_A and δ_b — the solubility parameters of phenol and water. The values of constants are: $b_0 = 1.4685 \, (\pm 0.0058)$, $b_1 = 0.6476$ (± 0.0183) , $b_2 = 1.7194(\pm 0.0713)$, $b_3 = 0.01904(\pm 0.00038)$, $b_4 = 40.96$.