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Abstract. Normal mode vibrational frequencies of 24 acetylenic hydrocarbons and alcohols were

calculated by using MM3, MMFF94, and PM3 methods. The results were compared with

experimental data. The best method for the estimation of the frequencies of the stretching
vibrations related to the CC triple bond was MM3, which had the relative rms error of0.3-0.7%.
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The synthesis and analysis of acetylenic compounds became very important in

recent decades due to their use as convenient starting materials in supramolecular
chemistry, nanotechnology, synthesis of drugs, and for other purposes [l].
Among the methods of analysis the vibrational spectroscopy offers a good
possibility to characterize the original structure of new compounds (materials) in

any state without destroying the sample. Therefore the vibrational spectroscopy
of acetylenes has to be investigated. Interpretation of IR as well as Raman spectra
is generally empirical, knowledge based, and therefore errors are often possible.
Quantum mechanical and molecular mechanics calculations give a possibility to

estimate the normal mode vibration frequencies of molecules and interpret them

by using animation of vibration.

In the present report we describe the results of comparative calculations of the

normal mode vibrations of the following 24 acetylenic hydrocarbons and

alcohols: propyne, 1-butyne, 1-pentyne, 1-hexyne, 11-heptyne, 2-butyne,
2-pentyne, 2-hexyne, 2-heptyne, 3-hexyne, 3-decyne, 3,3-dimethyl-1-butyne,
4,4-dimethyl-2-pentyne, 3-methyl-1-pentyne, 5-methyl-1-hexyne, 2-propyn-1-01,
2-butyn-1-01, 2-pentyn-1-01, 2-hexyn-1-01, 3-butyn-1-01, 3-butyn-2-01, 2-methyl-
-3-butyn-2-01, 3-pentyn-1-01, and 3-nonyn-1-01.
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Semiempirical PM3 (HyperChem 5.02 [2]) and two molecular mechanical

methods (MM3, TINKER ver. 3.7 [3]; MMFF94, SPARTAN Pro [4]) as the most

convenient methods for practical purposes in respect to availability and

calculation time were used. Root mean square errors (rms) and relative root mean

square errors (rrms) were calculated for the values of the estimated frequencies.
From the calculated frequencies the rms values were subtracted and the new rrms

values were calculated as described by Dewar et al. [S]. Experimental vibrational

frequencies were obtained from the literature [6,7] and from IR spectra
measured by us. Only frequencies of the stretching vibrations related to the CC

triple bond as the most useful diagnostic tools for the structure analysis of

acetylenes were investigated. Results of the analysis of the calculated frequencies
are presented in Table 1.

Type of vibration No. me,cm’| rrms, % rmsc, %

PM3 method (HyperChem)

C=C (all) 24 2178 2393 -215 9.9 0.6

CC (terminal) 12 2120 2325 -205 9.7 0.4

C=C (internal) 12 2235 2462 =227 10.1 0.2

H—C= 12 3319 3361 —42 1.3 0.4

C—C=C 12 924 1046 -122 15:1 7.2

C—C=C—C (symm.) 12 726 826 -115 16.2 3.6

C—C=(C—C (asymm.) 12 1136 1178 —41 4.1 1.9

MM3 method (TINKER)

C=C (all) 24 2178 2198 -20 1.1 0.6

C=C (terminal) 12 2120 2128 -8 0.5 0.3

C==C (internal) 12 2235 2268 -33 1.5 0.3

H—C= 12 3319 3327 -7 0.4 0.4

C—C=C 12 924 923 1 22 2.9

C—C=C—C (symm.) 12 726 740 -14 3.3 2.6

C—C=C—C (asymm.) 12 1136 1119 17 2.2 1.5

MMFF94 method (SPARTAN)
C=C (all) 24 2178 2165 13 5.7 0.5

C=C (terminal) 12 2120 2098 22 1.1 0.3

C==C (internal) 12 2235 2232 3 0.3 0.3

H—C= 12 3319 3270 =50 1.5 0.4

C—C=C 12 924 795 129 16.6 8.7

C—C=(C—C (symm.) 12 726 725 2 4.7 4.7

C—C=(C—C (asymm.) 12 1136 1103 34 3.3 1.6

me = mean error, rrms = relative root mean square error, rmsc = relative root mean square error

after subtraction of mean error.

Table 1. Analysis of calculated vibration frequencies



242

We established that the best method for the estimation of vibrational

frequencies of acetylenes is MM3. MMFF94 and particularly PM3 methods gave

remarkably greater rms errors. After subtraction of the systematic rms errors the

newly calculated relative mean errors were substantially decreased. It appeared
that after such correction all three methods estimate the stretching frequencies of

C=C and H—C= bonds very well — the relative mean errors were 0.3-0.7%.

Relative mean errors of the estimated asymmetric C—C=C—C and particularly

symmetric C—C=C—C and C—C= stretching frequencies still remained

relatively great even after correction. An enormously high value of relative rms

was obtained for C—C==C stretching vibration calculated with the MMFF94 and

PM3 methods.

To our knowledge the PM3 method has not been systematically tested and

compared with other methods in respect to the calculation of normal mode

vibrations of acetylenic compounds. Only the scaling factor (0.9761) and the rms

error value over all vibrations (159 cm™) are given by Scott & Radom [B] for

other compounds. We confirm that the PM3 method systematically overestimates

all frequencies observed, doing so to a greater extent than MM3, whereas

MMFF94underestimates all frequencies except C—C==C stretching.
It is also evident from our data that the use of only one scaling factor for the

correction of all calculated frequencies is not possible. Even terminal and internal

triple bond vibrations have different rms values and should be therefore handled

separately.
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MÕNEDE ATSETÜLEENIREA ÜHENDITE
MOLEKULAARVÕNKUMISTE VÕRDLEVAD ARVUTUSED

Sirje MAEORG, Peeter BURK ja Uno MAEORG

On arvutatud 24 atsetiileenirea siisivesiniku ja alkoholi normaalvonkumiste

sagedused, kasutades MM3, MMFF94 ja PM3 meetodit ning vorreldud saadud

tulemusi eksperimentaalandmetega. Parimaks osutus MM3 meetod, mis ennustas

C=C-sidemega seotud vonkesagedusi tdpsusega 0,3-0,7%.
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