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Modification of ergosterol resulted recently in a tetrol intermediate (1) that

has proper functionalities for the synthesis of certain type of 9,11-secosterols,
characterized by the enone moiety in the B-ring [l]. Another route of partial
synthesis, which starts with desoxycholic acid, is targeted at this type of

secosterols as well [2, 3]. In this communication we report the transformation of

(1) into 9,11-secosterols (2a) and (2c), isolated among other sterols from the

Arctic soft coral Gersemia fruticosa in our laboratory® [4].

After necessary protection/deprotection procedures the side chain was

introduced by Julia olefination with moderate yield. The carbanion for

alkylsulphonation was generated from i-BuSO,Ph, prepared smoothly from
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i-butyl iodide and thiophenol followed by oxidation with m-chloroperbenzoic
acid. Selective diol cleavage yielded smoothly the first target secosterol (2a)
with high yield

Selective hydrogenation of aldehyde functionality (C-11) with tetrabutyl
ammonium borohydride resulted in a poor yield of triol (2b). The formed

primary hydroxyl group was selectively acetylated with customary acetic

anhydride at lowered temperature to obtain the second target secosterol (2c).
None of the mentioned yields were optimized. Further synthetic work is being
carried out on preparative level.

Using synthetic schemes outlined in [l] and in this paper other related

secosterols can be obtained by building a proper side chain and, if necessary, by
further modification of B-ring. It will enable further insights into

antiproliferative and cytotoxic properties [lO-13] of these interesting natural

compounds.

r1: Ac,o, Py, chrom., chloroform—acetone /40: 1/; r,: H,O, AcOH, 75 °C, 20 min [s], chrom., petrol
ether—ether /4:1/; ry: n-BuLi, i-BuSO,Ph, THF, -70°C; r,: Na/Hg, MeOH, -40-20°C [6]; rs:

2N KOH, EtOH (95%), chrom., chloroform—ethanol /10: 1-8: 1/; rs: Pb(OAc),, AcOH [7], chrom.,

chloroform—ethanol /20: 1/; r;: BuyNBH,4, AcOH, benzene, reflux [B], chrom., chloroform—ethanol

/5:17; rg: 1,2 eq.. Ac,o, Py, CHCI3, —=7°C [9]. Reaction products were purified over silica using
flash chromatography (except (2b), which was purified on precoated glass plate, Baker, Si 500F).
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CHARACTERIZATION OF COMPOUNDS

(2a) Oil, Rf 0.52 (chloroform—ethanol /5:1/, Merck, silica gel 60 Fys4 and so

below as well if not stated otherwise), [ol]p’ +26° (0.27 g/ml, methanol), NMR

of °C at 125.7 MHz and 'H at 500.17 MHz in CDCI; on Bruker AMX-500

spectrometer, Sqvs; 'C from C-1 to C-26: 31.77, 30.47, 69.94, 32.71, 48.54,

69.31, 147.25, 136.19, 203.89, 44.63, 203.78, 51.22, 46.11, 43.68, 25.64, 26.45,
52.46, 16.82, 15.94, 38.47, 21.68, 131.82, 136.24, 30.98, 22.53, 22.63; 'H: 9.91

(dd, J= 1.4, 3.9 Hz, H-11), 6.60 (d, J =2.1 Hz, H-7), 5.29 (dd, J =64, 15.3 Hz,
H-23), 5.23 (dd, J=B.2, 15.3 Hz, H-22), 4.29 (dm, J = 10.0 Hz, H-6), 3.60 (m,

H-3), 3.56 (m, H-14), 1.22—2.32 (m, H-1, 2,4, 5, 12, 15, 16, 17, 20, 24), 1.11 (s,
H-19), 0.99 (d, H-21), 0.95 (d, H-25, H-26), 0.72 (s, H-18). 2D 'H-'H COSY

experiment and comparison with the closely related 24-nor-9,11-seco-11-

acetoxy-38,6a-dihydroxycholesta-7,22 (E)-dien-9-one [lo] unambiguously con-

firm the structure of (2a).

(2b) Oil, R; 058, 'H: in comparison with (2a) the product has no aldehyde
proton and characteristic 4 spin system from H-11 (3.68,m, 3.88,m) and H-12

(1.0,m, 1.59,m) has appeared. At the same time other functionalities have not

been modified: H-3 at 3.60(m), H-6 at 4.29(dm), H-7 at 6.58(d), H-18 at 0.64(5),
H-19 at 1.14(s), H-21 at 1.03(d), H-22 at 5.25(m), H-23 at 5.28(m), H-25 and

H-26 at 0.95(d).

(2c) Ry identical to that of original sample, isolated from the coral.

(3) m.p. 178-180°C, Rf 0.32 (hexane—acetone /2:1/), IR (KBr), Viax:272o

(—CHO), 1730, 1715 (—CHO, —COCH;), 1670 (—C=C—), 1390

(—OCOCH3;), 1235, 1015 (—C—o—), 970, 920, 900 (—CH=CH—) cm™".

(4) Oil, IR (neat), Vmax:3o6o (Ph), 1740 (—COCH;), 1660 (—C=C—), 1600

(Ph), 1400 (—OCOCH;), 1310 (—SO,), 1240 (—C—o—), 1140 (—SOO,), 1020

(—C—o—), 970, 920 (—CH=CH—), 760, 720, 680 (Ph) cm™".

(5) m.p. 192-194°C, R; 0.39 (chloroform—ethanol /5:1/), [a]p" +lo° (0.2 g/ml,
methanol), IR (KBr), Vi:3400 (—OH), 1660 (—C=C—), 1415 (—OH), 1010,

970, 830, 805 (—CHCH—) cm”'.
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