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Acyl migration in 1,3-diol monoesters may be treated as the intramolecular

transesterification where the acyl donor and acceptor are in the same molecule in

the close proximity, limiting the possible reaction paths compared with

intermolecular transesterification. In a few cases, the acyl transfer in the

regioisomers of 1,3-diol monoesters is mentioned [l-5] and found to be

dependent on substrate, reaction conditions and time [l-3], but the chiral aspects
of this isomerization have not been studied so far. o

Investigating the self-condensation reaction of 2-methylpropanale to

2,24-trimethylpentane-1,3-diol monoesters, we have also observed the acyl

migration, where the initially formed secondary monoester (1) is partially re-

esterified to the sterically less crowded primary monoester (2) [l]. However,
when the reaction was performed in the presence of chiral binaphthol catalysts,
the enantiomeric composition of products seemed to be also affected by the acyl
migration. Two experiments were performed for further confirmation. In both, a

racemic regioisomer of monoester was used as a substrate in the conditions

similar to the aldehyde self-condensation reaction. The results of these reactions

are given in the Table below.
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The enantiomeric excesses were quite small in those model experiments, but

they clearly showed that the acyl migration in both directions is affected by the

chiral catalyst (S)-(I) so that the monoesters with (S)-configuration will be

preferentially re-esterified. The results also indicate that the acyl migration must

be intramolecular proceeding in both directions through the similar activated

complexes co-ordinated on metal atom in the catalyst. Activated complex may be

co-ordinated not only on the added catalyst, but to some extent also on the

surface of reaction container walls. For example, we have observed the acyl
migration in pure secondary monoester samples if they were kept in glass vials at

+4°C for several months. This reasoning is supported by the following
observations: only monoesters are present in the reaction mixtures; and the

enantiomeric ratios are proportional in secondary and primary monoesters (if one

enantiomer in one monoester is in excess, then it is present proportionally in a

lesser amount in the other).

* Reactions were performed by adding substrate to the solution of (S)-(I) in THF and quenched
with saturated solution of NH,CI. Monoesters were separated from catalyst by distillation in

vacuo and the regioisomers were separated by column chromatography on silica gel. Yield of
(1°) + (2’) was after distillation 88% for entry 1, and 92% for entry 2.

®
The ratios of primary and secondary monoesters were calculated from the chromatographic data.

¢ Monoesters were hydrolyzed and then derivatized to diacetates before the determination of

enantiomeric compositions with GLC on chiral capillary column Chiraldex™ B-PH. The absolute
configurations were assigned comparing the retention times of enantiomers in the samples and

enantiomers with known configuration ((S)-2,2,4-trimethylpentane-1,3-diol diacetate eluted first

from Chiraldex™ B-PH). Pure diol enantiomers with known configurations were prepared by the

method described by Harada [6].
4

Monoester (1) contained initially ~ 15% ofmonoester (2).

Re-esterification reactions of diol monoesters with catalyst (S)-(I)*
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The practical value of this kind of re-esterification for preparing enantiopure
diols seems to be limited, because even if the selectivity could be enhanced in

other conditions or using other catalysts, it would still be the equilibrium
reaction (the enantiomeric excesses of both products will gradually decrease as

the reaction reaches the equilibrium [7, p. 414]). However, as shown above, the

intramolecular acyl migration may affect the stereochemistry of products and

should be considered in analogous systems, whenever the chiral selector is

present.
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