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It has been shown that various alkyl ammonium inhibitors of trypsin
(EC 3.4.21.4) are promoters of the enzyme active site acylation in the reactions

with incomplete nonspecific substrates like N-acetyl-glycine and N-acetyl-L-
-alanine esters [l-4]; the binding constants of the effectors obtained from the

promotion studies coincided with the values of their inhibition constants K; in the

reactions of the enzyme with its specific substrates, esters of N-acyl arginine or

lysine. Such promotion effect has been explained as a replacement of the lacking
positively charged amino acid side chain in incomplete substrates by alkyl
ammonium cation [l]. Thus, the promoting effect of alkyl ammonium inhibitors on

trypsin acylation might be based on the mechanism of the substrate-caused

activation of trypsin in the acylation step [5, 6], which provides cationic lysine and

arginine substrates with more than 1000-fold higher &, than their neutral analogues.
In this activation, electrostatic interaction between cation and the carboxylic anion

of AsplB9 in the enzyme active site seems to be necessary. Most drastically, the

importance of the plus—minus interaction for the activation finds support in the

case of a point-mutated trypsin with AsplB9 replaced by SerlB9 where the

activation of the enzyme in the reaction with arginine and lysine substrates is

achieved by adding acetate anion into the reaction mixture [7].
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On the other hand, as monovalent metal cations of inorganic salts have been

shown [B, 9] to be competitive inhibitors of tryptic hydrolysis of specific arginine
and lysine substrates with rather high effectiveness (for Cs*, K, =0.12 M, and for

K" and Na®, 0.28 and 0.72, respectively), we considered it interesting to check

whether these cations could be promoters of the tryptic hydrolysis of incomplete
substrates.

As can be seen in the Table, the most “inhibiting” cation, Cs*, had practically
no effect on the tryptic hydrolysis of N-acetyl-glycine methyl ester up to 0.43 M

concentration that is 3.6 times above the K; value of Cs" in the trypsin-catalyzed
hydrolysis of specific N-benzoyl-arginine p-nitroanilide substrate. Similarly,
there was no promotion in the case of K and Na* (data not shown). Obviously,
monovalent cations of inorganic salts, although forming ion pairs with the

carboxylic anion of AsplB9 in the substrate binding pocket left free by
nonspecific substrates as discussed in [9], do not contribute in catalytically
beneficial rearrangements in the activated complex of trypsin acylation.

But, surprisingly, another small cation, NH,", occurred to be promoter of the

tryptic hydrolysis of N-acetyl-glycine methyl ester. As can be seen in the Table,

at 0.196 M concentration of NH,CII, which is close to the K; value of 0.18 for

ammonium cation inhibition in tryptic hydrolysis of N-benzoyl-arginine

p-nitroanilide substrate [9], the rate of N-acetyl-glycine methyl ester hydrolysis
has increased more than two times when compared with ki’ at no NH,CI added.

CSALT’ M kII 103, M—l S—1

0.007 - 5.517 >

0.025 — 6.238

0.044 4.306 —

0.058 - 7.665

0.085 4.217 -

0.090 - 7.806

0.118 - 9.269

0.144 - 10.08

0.163 4.487 -

0.196 - 12.15

0.236 4.571 -

0.241 - 12.16

0.300 4.656 -

0.427 4,581 —

Influence of CsCl and NH,CI on tryptic hydrolysis of N-acetyl-glycinemethyl ester at 25 °C

and pH 6.6 in 0.1 M KCI solution wherek;;’ was 4.89 - 10~ M's™. Substrate hydrolysis was

followed titrimetrically on a Radiometer pH-stat (TTTBO/RECBO/ABUBO, Denmark);
0.01 M KOH was used as titrant
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The Figure shows the dependence of kj upon the concentration of NH,CI.
The curve-fitting by “Enzfitter” corresponds to the equation

ki = (kn° Ka +ki[AD/(K4 + [A])

in accordance with the following simplified reaction scheme for acylation
promotion:

k 110
B S 0 AR

+

A

AVK ke

EA+S —>FA+P

where E is enzyme, S is substrate, P is the reaction product (N-acetyl-glycine), A

is promoter, K} is the dissociation constant of the enzyme-promoter complex, ki
is the second-order rate constant of the substrate hydrolysis catalyzed by E, and

kiis the second-order rate constant of the substrate hydrolysis catalyzed by EA

(the ki*/ky’ value of 5.8 has been calculated from the presented data).
The mechanism of the promoting effect of NH," remains to be elucidated in

further studies. In comparison with monovalent metal cations, an obvious

difference of NH," is its ability to contribute to the formation of hydrogen bonds.

Ammonium cation can be used as an additional new instrument in studying the

substrate-caused electrostatic activation in tryptic hydrolysis.

Influence of ammonium chloride on the tryptic hydrolysis of N-acetyl-glycine methyl ester. The

line corresponds to K, = 0.503 M and ky* = 28.4 10> M's7\.
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