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Recent communication [l] about the application of the 3-benzyloxytetra-
hydropyranyl group as an efficient chiral auxiliary prompted us to report our

results on the chemoenzymatic preparation of the optically active 3-bromo-

substituted cyclic hemiacetal butyrates (-)-(1) and (+)-(2) (Scheme 1), which are

useful for direct stereoselective introduction of corresponding asymmetric
protecting groups [2, 3]. Our synthesis was carried out in two steps starting from

corresponding unsaturated compounds (Scheme 1). Carbocyclic analogues (5)
and (6) [4, 5] were prepared as well because of the interest in studying the

structure—reactivity relationship for the enantioselective hydrolysis catalyzed by
Lipolase (Humicola lanuginosa) lipase in aqueous medium [6].
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The acid-catalyzed coupling of the 3-substituted acetal with a hydroxy group
has been documented to give predominantly products of anti-mode [l]. The

approach to the preparation of individual isomers of 3-substituted furanoside and

pyranoside acetals proposed herein serves as an alternative to those starting the

synthesis from a chiral pool [l] or expecting the use of an optically active

hydroxy compound complicated by subsequent tedious chromatography for

diastereomer resolution [3].

Preparation of an optically active aldehyde hemiacetal by using the enzymatic
hydrolysis of the corresponding acyl derivative has been described for chloral

methyl acetyl acetal highly stabilized by chlorine atoms [7]. We have shown that

the stabilizing influence of the o-substituent(s) on the acylated hemiacetal

moiety should suffice to guarantee sufficiently high stability of the substrate in

water: unsubstituted tetrahydropyranyl butyrate decomposed spontaneously in

aqueous medium at pH 7 [6]. Optical resolution of 3-substituted cyclic
hemiacetal derivatives bearing the ester moiety to be hydrolyzed by lipase on the

3-substituent have also been described [B].
The racemic bromoacetal butyrates (1) and (2) as well as their carbo-

cyclic analogues (5) and (6) were prepared by electrophilic bromination of the

double bond with NBS in the presence of butyric acid (Scheme 1) and purified
over silica. The initial rates of the enantioselective hydrolysis of the

bromoacetals (1) and (2) catalyzed by Lipolase in aqueous medium were found

to be 1-2 orders of magnitude higher than those of their carbocyclic counterparts
(5) and (6). The initial rates recorded were found to correlate with the integrated
HOMO localization coefficients calculated using the semiempiric quantum
chemical method MNDO for the O—C=o atoms forming the ester moiety of

Scheme 1. Synthesis of homochiral o-homo-®-hydroxy aldehyde hemiacetals.
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the substrate [6]. The enantioselectivity of the hydrolysis of bromohemiacetal

butyrates (1) and (2) as well as of the esters (5) and (6) (E>22 and E>s2,
respectively) was estimated at 55-65% conversion by analysing the enantio-

purity of the unreacted ester. The enantiomerically enriched bromohydrins
isolated over silica were acylated with (-)-MTPA [9] and the absolute

configurations assigned for the major enantiomer(Scheme 2) were found to be in

accordance with the general enantiopreference rule for lipases [lo].

In conclusion, the kinetic optical resolution by lipase-catalyzed hydrolysis of

cyclic 3-bromohemiacetal butyrates synthesized under strict stereocontrol was

shown to be a fast process of sufficiently high enantioselectivity for synthetic
purposes.

EXPERIMENTAL

1. Electrophilic bromination

General procedure. To a mixture of NBS (3 mmol) and butyric acid

(9 mmol) in dry EtOAc (3 ml) on a magnetic stirrer the alkene (3 mmol) was

added carefully on cooling to 0 °C. The temperature was allowed to rise to

RT and stirring was continued for 3 hours. The mixture was diluted with

EtOAc (50 ml), washed with NaHCO; and Na,SOj; solutions and brine, dried

over anhydrous Na,SO,, filtered, and evaporated. The target bromobutyrate
was gained in 60% yield after short-column chromatography over silica.

Scheme 2. Chemical shifts corresponding to the carbon atoms ofthe bromoacetal unit in the '*C
NMR spectra of the Mosher’s esters.
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2. Lipase-catalyzed hydrolysis [ll]
General procedure. Hydrolysis was carried out on a pH-stat (Radiometer,

Denmark) under vigorous stirring in water (pH 7) containing NaCl (0.15 M)
and CaCl, (2 x 107 M). The reaction volume was 15 ml; the acid liberated

was titrated using NaOH (0.175 M). The substrate amount was 0.5-1.0 mmol;

0.25-1.0 ml of Lipolase 100 L was used. The product was taken up into

EtOAc, the organic layer was separated by centrifugation (3000 G, 10 min).
The EtOAc extract was washed carefully with 5% NaHCO; solution, water,

and brine. The crude product was fractionated by short-column chromato-

graphy over silica (eluted with C¢Hg followed by CgHe/acetone 20/1). The

unreacted ester was recovered in 35-45% overall yield and estimated to be

pure enantiomers by NMR using Yb(FOD);. Optically enriched bromohydrins
were gained in 35% yield, acylated with (-)-MTPA, and the resulting
Mosher’s esters were investigated by using "C NMR spectroscopy
(Scheme 2).

3. Characterization of compounds
(2R,3S)'(I): ]3C NMR (C2_s, C(2)l_4) — 1026, 490, 333, 682, 1721, 362,

182 136; TLC — R.=034 (CHgy o] 96 (c 1.0, CHs; e.e>94%);

(2R,35)-(2): °"C NMR (C24 Cwyl4) — 94.2, 47.4, 30.5, 23.5, 64.4; 171.6,

36.1, 18.3, 13.6; TLC — Rr=o.3o (CHgy; [o]% +54 (e1.2 CHs;

e.e.>94%); 2R3R)-(3): [al,. +25 (c 1.3, CHs; e.e.>80%); TLC —

R;=0.38 (CsHg/acetone 10/1); (2R,3R)-(4): [a]2; -9.0 (c 1.2, CHz;

e.e.>80%); TLC -Rr=o.39 (C-Hyacetone 10/1); (15,25)-(5); °C NMR

(Cics; C 114) — 81.8, 53.0, 34.5, 21.7, 29.5; 172.6, 36.2, 18.5, 13.6; TLC —

Rr=o.49 (CHg); [0 ] +BB (c 1.0, CeHg; e.e.>94%); (15,28)-(6): °C NMR

see ref. 4; TLC — R+=o.47 (CGHy); [o]3, +44 (c 1.0, CeHg; e.e.>94%);

(IR,2R)-(7): °C NMR (C1.5 — 80.3, 56.9, 33.7, 20.9, 31.0; TLC — Rr= 0.49

(CsHg/acetone 10/1); [o]sy, =34 (c 3.0, CsHs; e.e.>90%); (IR,2R)-(8):

[]2 —36 (e 0.5, CHs; e.e.>90%); TLC — Rr= 0.58 (CsHyacetone 10/1).
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