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Abstract. Supercritical fluid extraction was performed on different oil shale samples
giving characteristic extracts in very mild conditions. The distribution of n-alkanes in
extracts is unique for every sample.
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INTRODUCTION

In the search for new methods in the extraction and separation of
complex natural mixtures from a solid matrix like rocks, the use of super-
critical eluents is assuming increasing importance. Supercritical fluid
extraction (SFE) has been shown to be an attractive alternative to the
conventional solvent extraction for a wide variety of analytes [']. SFE
is labour-saving and less time-consuming. The most widely used super-
critical eluent in SFE is CO,, allowing to combine, in one system, the
speed and the safety of the extraction.

Part of the organics is not included in the structure of kerogen and
can be extracted from oil shale matrix. It is like a mobile phase inside a
macromolecular network. The quantification of this mobile phase will be
an interesting application for SFE. The study of the extraction possibilities
also includes the determination of biomarkers (i.e. pristane and phytane)
and the carbon number distribution in the source rocks of crude oil [2]. For
this kind of application, it is important to obtain data about the character-
istics of extraction by supercritical CO,, and to evaluate the range of
extraction power for a certain type of compounds because of the relatively
nonpolar nature of the fluid used. On the other hand, the solvent strength
of a supercritical fluid can be easily controlled by the pressure and tempe-
rature used for extraction. The choice of these conditions can lead to the
selective extraction of substances from matrix.

In this study, the target samples are oil shale concentrates whose
extracts may be complex organic mixtures. The first step is to get an
impression of the difference between extracts from different oil shale
samples. The second step is to vary the extraction conditions to a large
degree in order to achieve the selective extraction,
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EXPERIMENTAL

SFE is constructed from suitable parts of the HPLC laboratory equip-
ment. The off-line SFE system is shown in Fig. 1.

An HPP4001 (Laboratorni Pristroje, Czechoslovakia) syringe pump
with a maximum operating pressure of 500 atm was used to deliver fluids.
The self-constructed extraction cell used recycled HPLC column and fit-
tings with a 20 um pore diameter (stainless steel) frits. Fittings were
placed on each end of the piece of stainless steel tubing to produce a vessel
with an internal volume of 1.0 ml (60 mmX4.6 mm i.d.) which housed
the sample.

A LC column oven with a maximum operating temperature of 100°C
was used to maintain constant extraction temperature. The oven tempera-
ture was kept on the desired level and the extraction cell was held in it
for a long time to stabilize the sample temperature before extraction. Low
temperatures were used to avoid the thermal degradation of sample.

A stainless steel tubing transfer line carried the extract to the restric-
tor. The narrow stainless-steel tube with a pressed end was used as a
restrictor to get the required fluid flow rate from 0.5 to 1.5 ml/min. The
extract was collected by expansion from the restrictor capillary into 2 ml
of hexane or chloroform. In this study, the SFE will be carried out in a
dynamic extraction mode. The chromatograms of collected extracts in
hexane or chloroform are estimated on a separate chromatograph.

A Chrom 5 (Laboratorni Pristroje, Czechoslovakia) .gas chromato-
graph (GC) equipped with a flame ionization detector (FID), a splitter
port (1:150) and a 50 mX0.20 mm i. d. fused silica capillary column with
the bonded phase OV-101 as a stationary phase, was used for GC analysis.
Helium was used as the carrier gas (the inlet pressure of 1.4 kG/cm? and
a Hewlett-Packard 3390A reporting integrator was applied for chromato-
gram calculation). GC analyses were performed at an initial oven tempe-
rature of 50°C, followed by a linear increase to 220°C at 2°/min. The
injector temperature was kept at 160°C. The detector temperature was
kept at 250 °C. The sample volume injected was 5—10 pl.

8 4 8
1 S -
2 7
Fig. 1. Schematic diagram of the supercritical fluid extraction apparatus: I — fluid

cylinder, 2 — activated charcoal and molecular sieve trap, 8 — syringe pump, 4 — oven,
5 — extraction vessel, 6 — restrictor, 7 — extract collection vial, 8 — on-off valve.

MATERIALS

Industrial grade CO, (purchased from Eesti AGA Ldt.) with no oily
constituents was employed for extraction analysis. Control experiments
showed no contaminated peaks in the range of interest. In experiments,
%he gxtraction with liquid CO; was performed with a flow rate of 1 ml/min
or 30 min,
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All the solvents used were chromatographic grade (Reakhim, Khar-
kov, Ukraine).

The samples under study represent different types of shales originating
from different areas of Estonia (Dictyonema and Kukersite), Kazakhstan
(Kenderlyk) and Russia, the middle reaches of the Volga (Kashpir).
Kukersite (93.2% of organic matter) and Kenderlyk shale (56.09% of
organic matter) originate predominantly from the lipoid fraction of the
initial sediments. The organic part of Dictyonema shale (59.9% of organic
matter), a typical “black” shale, is of a very complex nature with its
specific transformation ways of initial material. Kashpir shale (87.6% of
organic matter) is a representative of high-sulphur shales. More detailed
data about the parameters of these shales are available in [?].

The quantitative composition of the extracts was determined by using
the internal standard method, 1-tetradecene (>98%) serving as standard.

DISCUSSION

SFE was the method of choice for sample preparation due to the highly
interactable nature of the sample matrix and the increased speed in com-
parison with traditional liquid extraction, and the non-use of organic
solvents. :

Preliminary analysis of the SFE extracts from all samples showed that
no additional sample preparation (except for the addition of the internal
standard) was required after SFE.

The complex nature of the extract is demonstrated by the large number
of peaks in the FID-generated chromatogram of the extract. Chromato-
grams for different oil shale samples (Fig. 2, a—d) differ in the amount
of peaks and in the relative height of the same peaks. The mass balance of
extracts on four shales is given in the Table.

The data show that the total amount of compounds extracted and their
n-alkane content are different for the oil shale samples studied, being
highest for Kukersite and lowest for Kenderlyk shale. The distribution
curves of n-alkanes in extracts (Fig. 3) are similar for Kukersite and
Dictyonema (maximum points are at Cy and C,;). The Kenderlyk and
Kashpir oil shale extracts show the maximum points of these curves to
be at C;s alkane. :

GC analysis showed the presence of mainly branched and normal
alkanes. A detailed description of the results of the identification of com-
ponents in SFE extracts of oil shale samples will be presented in, the
next paper. It may be said, even now, that the SFE extract is an additional
source for the identification of the origin of oil shale. The extraction effi-
ciency increased with increasing the extraction temperature from 45 to
85°C and changed the nature of the extract. The trends in extraction
efficiencies, while changing the extraction temperature, appear to be
highly dependent on sample matrix.

CONCLUSIONS

The SFE studies have demonstrated the applicability of supercritical
fluids for the extraction from sedimental rocks. They have confirmed the
fact that oil shales are unique for giving extracts in very mild conditions.
This latter feature may be used for the discrimination/the identification
of different samples,
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Fig. 2. Chromatograms of the extracts of different oil shale samples: a — Kukersite,

b — Dictyonema, ¢ — Kashpir, d — Kenderlyk. Conditions of extraction: 0.3 g powdered

sample at temperature 85°C and pressure 40 Mpa; extracting time 0.5 h at fluid rate
0.5 ml/min, Conditions of chromatographic analysis see in text,
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A comparison of the amounts of n-alkanes and the total yields from oil shale samples
by supercritical fluid extraction, mg/g of rock

Kukersite Dictyonema Kashpir Kenderlyk
n-alkanes 0.47 0.039 0.032 0.11
9% from total 40.5 10.8 17.0 5.2
Total yield 6.87 2.2 1.13 2.03

1.2

Fig. 3. Distribution of n-alkanes by carbon number in the extract of different oil shale
samples: a — Kukersite, & — Dictyonema, ¢ — Kashpir, d — Kenderlyk.
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POLEVKIVI KONTSENTRAATIDE EKSTRAKTSIOON
ULIKRITILISES OLEKUS ELUENDIGA

Mihkel KOEL, Anne ORAV

On esitatud tulemused polevkivide ekstraktsiooni kohta iilikriitilises
olekus COj-ga. Protsessi iseloomustavad kiirus, protseduuri lihtsus ning
kasutatava ekstragendi ohutus. Nii kvalitatiivne kui ka kvantitatiivne val-
jatulek ekstraktsioonil on iga pdélevkivi puhul erinevad. See viitab voima-
lusele kasutada vaadeldavat meetodit polevkivide eristamiseks.

CBEPXKPUTHYECKASA ®JIOUJHASl 3KCTPAKLLUSA
KOHLLEHTPATOB CJIAHLLEB

Muxkear KO3JIb, Aune OPAB

[TpuBeneHsl pe3y/bTaTbl 3IKCTPAKUHH CJAHLEBBIX KOHLUEHTPATOB CO
cBepxkputHueckuM CO,. MeToa OT/IHYaeTcsi MPOCTOTOH H OBLICTPOTOH Ipo-
BeJleHHsl aHaJii3a, a Takke 0e30macHOCTbIO 3KcTpareHTa. KoJHyecTBEHHBIH
M KauyeCTBEHHBIH COCTAB 3KCTPAKTOB KaKJOro CJaHIa pa3/HueH, YTO MO3BO-
JsieT 1aTh UM TOUHYIO XapaKTEepPHCTHKY.
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