Proc. Estonian Acad. Sci. Chem., 1992, 41, 4, 157–163 https://doi.org/10.3176/chem.1992.4.01

UDC 661.635.4.093.6.047

Kaia TONSUAADU* and Mihkel VEIDERMA*

COMPOSITION AND PROPERTIES OF THE HEATING PRODUCTS OF THE MIXTURES OF CALCIUM PHOSPHATE AND ALUMINOSILICATES

Abstract. The influence of different compounds (SiO₂, MgO, Al₂O₃, Fe₂O₃) as well as natural aluminosilicates (nepheline, glauconite, pseudoleicite) on the citric acid solubility of the heated mixtures on the bases of calciumphosphates (CaO:P₂O₅=2.8-3.2) at 1350—1400 °C has been studied. The products were studied by chemical, X-ray, and IR methods.

In the mixtures with pure reagents the solubility of P_2O_5 is lowered mostly by Mg (by 24.5%), to a lesser extent by Fe (9.4%). All has practically no influence. The soluble compounds are α - and β -Ca₃(PO₄)₂. The insoluble residue contains β -Ca₃(PO₄)₂ in which Ca is partly substituted for other cations and also α -SiO₂, α -Al₂O₃, and amorphous iron silicates.

In the mixtures with nepheline and pseudoleicite, the solubility of P_2O_5 is 97-98% when the molar ratios of $SiO_2:P_2O_5>0.21$ and $CaO:P_2O_5=2.9-3.0$. In the mixtures with glauconite, the solubility of P_2O_5 may be as much as 10% lower.

The solubility of phosphorus in the products obtained by hydrothermal treatment of phosphates in 2% citric acid solution does not exceed 30-40% of its total content, which accounts for their insufficiency as fertilizers. Phosphorus is mainly present in the form β -Ca₃(PO₄)₂ [⁴]. For the known solid phase methods used for obtaining thermophosphates as phosphate fertilizers expensive reagents are needed, first of all sodium carbonate. Solubility can be increased also by using natural aluminosilicates (nepheline, glauconite, pseudoleicite), which often accompany phosphates in their deposits [²]. The effect of different aluminosilicates varies essentially due to their different composition (Table 1).

Table 1

Mineral	Na ₂ O	K ₂ O	MgO	SiO ₂	Fe ₂ O ₃	Al_2O_3
Nepheline (N)	11.4	6.3	0.2	54.3	3.3	22.2
Glauconite (G)	0.1	8.9	4.3	51.1	20.3	10.7
Pseudoleicite (P)	0.4	15.0	0.3	55.1	1.1	21.5

Chemical composition of aluminosilicates

 $\begin{array}{l} N & - 3Na_2O \cdot K_2O \cdot 4Al_2O_3 \cdot 8SiO_2; \ G & - K_2O \cdot 4(MgO, \ FeO, \ Fe_2O_3, \ Al_2O_3) \cdot 10SiO_2 \cdot 3H_2O; \\ P & - K_2O \cdot Al_2O_3 \cdot 6SiO_2 + K_2O \cdot Al_2O_3 \cdot 2SiO_2. \end{array}$

C Eesti TA Toimetised. Keemia 1992

^{*} Tallinna Tehnikaülikool (Tallinn Technical University), Ehitajate tee 5, EE0108 Tallinn. Estonia.

Table	Insoluble residue	Insoluble phase	OHAp (2.81);	OHAP (2.80)	α-SiO ₂ (4.00)	β -Ca ₃ (PO ₄) ₂ (2.85); α -SiO ₂ (4.02)	β -Ca ₃ (PO ₄) ₂ (2.86); α -SiO ₂ (4.02)	β -Ca ₃ (PO ₄) ₂ (2.87); α -SiO ₂ (4.02)	α -SiO ₂ (4.04); α -Al ₂ O ₃ (2.08)	Kein TON Kein TON ComPOSI
	,sO21	% MgO	039.1	29.5	2.7	27.9	8.3	14.3	5.5 7.6	
eating products of the mixture $a0:P_2O_5=3.2$) with admixtures	the second secon	Solutie Solutie phase bras brase brase brase brase brase bras bras bras bras bras bras bras bras	α-Ca ₃ (PO ₄) ₂ (2.90)*		α-Ca ₃ (PO ₄) ₂ (2.90)	β-Ca ₃ (PO ₄) ₂ (2.86)	α -Ca ₃ (PO ₄) ₂ (2.90) β -Ca ₃ (PO ₄) ₂ (2.88)	α -Ca ₃ (PO ₄) ₂ (2.90) β -Ca ₃ (PO ₄) ₂ (2.86)	α-Ca ₃ (PO ₄) ₂ (2.90)	
ubility of h CaCO ₃ (Cé	citric acid	MgO Fe ₂ O ₃ Al ₂ O ₃	In-Ch q ori o Ige oitiy		rus i that contr	. 67.0	52.1	50.7	not deter.	
ion and sol	lity in 2% (1:200),	CaO	60.4	70.1	99.8 98.7	74.9	95.2	90.2	98.1	β-Gas(PO) thermopho first of g-gl
Composition of Aller	Solubi	sits ² [²]	59.8	68.4	99.8 98.7	76.3	96.7	89.3	99.2 99.7	often seou
Table I	Temp.,		1350	1400	1350	al com	1350	1400	1350 1400	ion peaks a
Hanegen Aslandson Hahren e 1937 Hay to the second second Crange 22 Market Second Ranse 101 1 San 10 1 San 11	Molar ratio	Me ₂ O ₃ +MeO P ₂ O ₅ +SiO ₂	3.20	Og 1073 108 108 108 108 108 108 108 108 108 108	2.57	2.70	2.50	гония Істовы П. ОШ КОМ В Е.Л.ЬБ	2.55 (b) (b)	es the main diffract
03) · 105103 · 3H2O; RAHHONJJAAD3 Ч В СПЛИ О. (. светса & 5, в ВЕОГОВ' ТИРИТ В Фетлок, ЭТЕЕП И	Da, Als R.R.O.) R.R.C.) Jinto to Minto to	Admixture, %			Si0 ₂ - 4	SiO ₂ - 4 Mg0 - 2	SiO ₂ - 4 Fe ₂ O ₃ - 2		$SiO_2 - 4$ Al ₂ O ₈ - 2	* In parenthese

158

TA Toimetised.

It is well known that magnesium, iron, and aluminium raise the temperature of the phase change of β -Ca₃(PO₄)₂ to the more soluble α -Ca₃(PO₄)₂ from 1180 °C to 1550°, 1450°, and 1250 °C, respectively, hindering the obtaining of assimilable fertilizers [³⁻⁵]. At the same time the solubility of calciumsilicophosphates in standard citric acid solution is high [^{3, 6}]. From here arises the need to study the co-effect of the constituent parts of aluminosilicates, particularly as the data presented in literature are contradictory [³⁻⁹].

Experimental

In the experiments chemically pure Ca $(H_2PO_4)_2 \cdot H_2O$, CaCO₃, Al (OH)₃, MgCO₃, Fe₂O₃, amorphous SiO₂, and natural aluminosilicates (Table 1) were used. The composition of the initial mixture Ca $(H_2PO_4)_2 \cdot H_2O$ with CaCO₃ (molar ratio CaO:P₂O₅=R=2.8-3.2) and the calcinating temperatures were chosen similar to those used in thermophosphate production. To this mixture the other reagents in amounts 2-20% (mass) were added. The mixtures were calcinated at 1350 °C and 1400 °C during 90 min in an electric oven, then slowly cooled down to room temperature. The heating products were treated with 2% citric acid solution for 30 min, with the ratio of the sample and the solution mass 1:100 or 1:200. The solubility of the mixture components was determined by chemical methods. X-ray and IR methods were used to study the heating products and the insoluble residue in 2% citric acid solution. X-ray diffraction measurements were carried out with a Dron 3M (USSR) instrument (CoKa). IR spectra were taken by a SPECORD IR 75 spectrophotometer using the KBr disc method.

Results and Discussion

Mixtures of pure reagents. According to the data of the experiments the solubility in 2% citric acid solution (sample—solution ratio 1:200) of the initial mixture of Ca $(H_2PO_4)_2 \cdot H_2O$ with CaCO₃ (R=3.2), calcinated at 1350 °C and 1400 °C, is 60.9 and 70.5%, respectively (Table 2). The soluble part is α -Ca₃(PO₄)₂, the insoluble residue is hydroxyapatite (OHAp).

When 4% of amorphous SiO₂ (molar ratio SiO₂:P₂O₅=0.25) is added the solubility of the mixture increases to 97.3-98.1%, the solubility of P₂O₅ to 99.8-98.7%. It has been established by X-ray and IR analysis that in the heating products phosphorus is present in the α -Ca₃(PO₄)₂ form. The insoluble part consists of α -cristobalite. This is confirmed by IR spectra, where the characteristic absorption bands of Si-O bond appear at 790-810 and 480-510 cm⁻¹ (Fig. 1). Partly SiO₂ is in a soluble form (in the composition of the solid solution of α -Ca₃(PO₄)₂- α -Ca₂SiO₄)), as the amount of the insoluble residue is smaller than the quantity of SiO₂ in the mixture.

The 2% content of MgO or Fe₂O₃ in the calciumphosphate mixture with SiO₂ lowers the solubility of P₂O₅ to 76.3% or 89.3%, respectively, of its total content. The soluble part of the heated mixture with Fe₂O₃ consists of α - and β -Ca₃(PO₄)₂ (with some substitutions). In the mixture with MgO, there is only less soluble β -Ca₃(PO₄)₂ present, in which Ca is partly substituted by Mg, as the main diffraction peaks are shifted to lower values (ASTM — 9—169; 20—348). The solubility of Mg is close to that of CaO and P₂O₅, whereas in the mixtures with Fe₂O₃ the solubility of Fe is much lower. This can be explained by the formation of insoluble amorphous iron silicates.

1*

Fig. 1. IR absorption spectra of heating products of the mixture. $1 - Ca(H_2PO_4)_2 H_2O + +CaCO_3$ with admixtures; $2 - SiO_2$; $3 - SiO_2$, Al_2O_3 ; $4 - SiO_2$, Fe_2O_3 ; $5 - SiO_2$, MgO.

a -- heating products; b -- insoluble residue in 2% citric acid solution. AHO)

Aluminium, added as Al(OH)₃, does not lower the P_2O_5 solubility in the product. It occurs as α -Al₂O₃ (d=2.08 Å) in the residue.

Therefore, in the mixtures with SiO₂, the solubility of P_2O_5 is lowered mostly by Mg, to a lesser extent by Fe. Al has practically no influence. This corresponds to the decrease in the content of β -Ca₃(PO₄)₂ in the products.

Mixtures with aluminosilicates. To the mixtures of $Ca(H_2PO_4)_2 \cdot H_2O$ with $CaCO_3$ (R=2.8-3.2) the aluminosilicates were added in the amount of 5-20% from the mass of the heated calciumphosphate mixture.

The solubility of P_2O_5 of the heating products depends on the conditions of its determination and the molar ratio $CaO:P_2O_5$ of the mixture (Fig. 2), reaching the maximum value when R=2.9-3.0. In the case of the decrease of the sample—solution ratio from 1:100 to 1:200, the solubility of P_2O_5 increases as the result of the increase in the β -Ca₃(PO₄)₂ solubility.

Fig. 2. Dependence of the solubility of P₂O₅ of heating products of the mixture Ca(H₂PO₄)₂·H₂O+CaCO₃ in 2% citric acid with glauconite (G) and nepheline (N) on the molar ratio of CaO:P₂O₅. Heating temperature 1350 °C, time 90 min. Sample solution mass ratio 1:100 (broken line) and 1:200 (solid line).

In the mixtures with glauconite the solubility of P_2O_5 in 2% citric acid solution (1:200) does not rise above 93.2%. When the content of SiO₂ is more than 5%, the amount of the liquid phase increases to the extent of disturbing the solid phase process. The insoluble residue consists of OHAp and β -Ca₃(PO₄)₂, in which a part of Ca is replaced by Mg.

The solubility of P_2O_5 is practically complete in the mixtures with nepheline or pseudoleicite, if the molar ratio of $SiO_2: P_2O_5 > 0.21$ (Table 3). The soluble compounds of the heating products are α - and β -Ca₃(PO₄)₂, the insoluble residue is β -Ca₃(PO₄)₂ with substitutions.

Table 3

	$Ca(H_2PO_4)_2 \cdot H_2O + CaCO_3$ (CaO:P_2O_5=3.2) with									
Composition,	Glau	conite	Nepl	neline	Pseudoleicite					
% discutAnto	9%	17%	8%	14%	4%	7%				
	20.7	27 5	20.5	27.6	41.7	41.2				
CaO	50.8	46.6	50.5	45.9	52.5	51.5				
MgO Insurance	0.3	0.6	< 0.1	< 0.1	< 0.1	< 0.1				
Fe ₂ O ₃ of bolooming	2.2	3.8	0.5	0.7	< 0.1	< 0.1				
Al ₂ O ₃ Al ₂ O ₃	0.7	2.0	2.1	4.6	1.4	2.0				
K2O - D do attab	0.6	1.4	0.6	1.3	1.0	1.4				
Incoltad Na ₂ O bootsbroke m	< 0.1	< 0.1	091.30-8	2.2	< 0.1	< 0.1				
SiO ₂	4.8	8.7	4.4	0 7.70	2.5	3.7				
Molar ratio SiO2:P2O5	0.29	0.55	0.26	0.49	0.14	0.21				
Solubility of P2O5 in 2%										
citric acid (1:200) %	86.5	89.6	078	99.7	91.8	96.6				

Chemical composition and solubility of heating products (1350 °C, 90 min)

Conclusions

Experiments on model mixtures allow of the assumption that nepheline and pseudoleicite are well suited for obtaining phosphate fertilizers by solid phase thermal methods. The advisable molar ratios of $CaO:P_2O_5$ and $SiO_2:P_2O_5$ in the mixtures are 2.9—3.0 and 0.21—0.25, respectively. Pseudoleicite has an advantage as its K₂O content is higher and, therefore, the product is enriched with K₂O (Table 3). Then the solubility of the heating products in 2% citric acid solution is almost complete.

When glauconite is used, the solubility of P_2O_5 may be as much as 10% lower. It is caused by the higher MgO and Fe_2O_3 content in glauconite in comparison with nepheline and pseudoleicite. The quantity of the glauconite added is limited also by partial fusion of the mixture.

REFERENCES

- Veiderma, M., Pyldme, M., Tynsuaadu, K. Thermische Entfluorierung von Apatite. Chem. Technik., 1988, 40, 4, 169–172.
- Veiderma, M., Pyldme, M., Tynsuaadu, K., Knubovets, R. Search for natural reagents for obtaining thermophosphates. — Phosphorus Res. Bull., 1991, 1, 421-426.
- 3. Ando, J. Studies on Fertilizers. Tokyo, 1965.
- Лазоряк Б. И., Оралков С. Ю., Голубев В. Н., Жданова А. Н. О взаимодействии трикальцийфосфата с ортофосфатом железа. — Ж. неорган. хим., 1989, 34, 7, 1710—1713.
- 5. Лазоряк Б. И., Баатарсух Б., Голубев В. Н., Азиев Р. Г. Влияние соединений магния на свойства ортофосфата кальция. Хим. пром., 1991, 10, 28—29.
- 6. Лазоряк Б. И., Голубев В. Н., Азиев Р. Г. Строение силикофосфатов Са_(3+x)□_(1-x)(PO₄)_{2(1-x)}(SiO₄)_{2x}. — Кристаллография, 1988, 33, 5, 1113—1121.
- Голубев В. Н., Лазоряк Б. И., Иванов Л. Н., Азиев Р. Г. Синтез и физико-химическое исследование силикофосфатов кальция. Ж. неорган. хим., 1989, 34, 7, 1714—1721.
- Mathew, M., Schroeder, L. W., Dickens, B., Brown, W. E. The crystal structure of a-Ca₃(PO₄)₂. — Acta Cryst., 1977, B33, 1325—1333.
 Amarasekįra, J., Ismail, M. G. M. U. Preliminary laboratory studies on Eppawela
- Amarasekfra, J., Ismail, M. G. M. U. Preliminary laboratory studies on Eppawela apatite. — J. Nat. Sci. Caun. Sri Lanka, 1983, 11, 2, 211-224.

Received June 10, 1992

Kaia TONSUAADU, Mihkel VEIDERMA

KALTSIUMFOSFAADI JA ALUMOSILIKAATIDE SEGUDE KUUMUTUSPRODUKTIDE KOOSTIS JA OMADUSED

Et uurida kaltsiumfosfaadi ja alumosilikaatide segudes eri elementide mõju fosfori lahustuvusele 2-protsendilises sidrunhappe lahuses, valmistati mudelsegud Ca(H₂PO₄)₂·H₂O ja CaCO₃ baasil. Segudele lisati SiO₂, MgO, Fe₂O₃, Al₂O₃ või looduslikke alumosilikaate (nefeliini, glaukoniiti, pseudoleutsiiti) ning kuumutati neid temperatuuril 1350° ja 1400 °C. Produkte analüüsiti keemiliste, röntgen- ja IP-spektroskoopia meetoditega.

Fosfaadi lahustuvust segudes vähendab kõige rohkem Mg (24,5% võrra), vähem Fe (9,4%), Al praktiliselt ei mõju. Lahustuvad ühendid produktis on α - ja β -Ca₃(PO₄)₂. Mittelahustuv jääk sisaldab β -Ca₃(PO₄)₂, milles osa Ca on asendunud teiste katioonidega, samuti α -SiO₂, α -Al₂O₃ ja amorfset rauasilikaati.

Kaltsiumfosfaadi segudes nefeliini ja pseudoleutsiidiga on P_2O_5 lahustuvus 97–98%, kui SiO₂:P₂O₅ moolsuhe on suurem kui 0,21 ja CaO:P₂O₅=2,9-3,0. Segudes glaukoniidiga on P₂O₅ lahustuvus kuni 10% madalam.

СОСТАВ И СВОЙСТВА ПРОДУКТОВ ПРОКАЛИВАНИЯ СМЕСЕЙ ФОСФАТОВ КАЛЬЦИЯ И АЛЮМОСИЛИКАТОВ

Изучено влияние различных соединений (SiO₂, MgO, Fe₂O₃, Al₂O₃) и природных алюмосиликатов (нефелина, глауконита, псевдолейцита) в смесях с фосфатами кальция на растворимость P₂O₅ в 2⁰/₀-ной лимонной кислоте. Модельные смеси приготовлены на базе Ca(H₂PO₄)₂·H₂O+CaCO₃ и прокалены при температурах 1350 и 1400 °C. Использованы химический, рентгенофазовый и ИК-спектроскопический методы анализа.

Установлено, что содержание Mg в смеси синжает растворимость P_2O_5 в большей мере (на 24,5%), Fe в меньшей мере (на 9,4%), а Al практически не влияет. Растворимыми соединениями в продукте являются α - и β -Ca₃(PO₄)₂. В состав нерастворимого остатка входят β -Ca₃(PO₄)₂, в котором часть Ca замещена другими катионами, а также α -SiO₂, α -Al₂O₃ и аморфные силикаты железа.

В смесях с нефелином и псевдолейцитом растворимость P_2O_5 составляет 97—98% при мольном соотношении SiO₂ : $P_2O_5 < 0.21$ и при CaO : $P_2O_5 = 2.9-3.0$. В смесях с глауконитом растворимость P_2O_5 ниже на 10%.

from ammonium phosphate, urea and potassium salts is discussed in-

The process of obtaining area-ammophoska from ammoniated slurry of wet-process phosphotic acid was first demonstrated by TVA (USA) in 1964 and the first plant using this process was put into operation four years later in India. Production of area-ammophoska on the basis of solid ammonium phosphate was developed by Fisoas 1.1d. (England) [¹⁻⁴]. Foday brea-ammophoska is produced in india. Japan, Nerway the Netherlands, Spain, and Gualemala. Granulation of urea-ammophoska is carried out in a rotary drum granulator or by compaction phosphone acid and solid iammonium phosphate used. Granulation of the products by extrasion compaction, and mixing in "pigmil" has been tested [¹⁻⁴]. The initial drue for designing plants of urea ammophose base acid and solid iammonium phosphate used. Granulation of the products by extrasion compaction, and mixing in "pigmil" has been tested [¹⁻⁴]. The initial drue for designing plants of urea ammo-

As the possibilities of obtaining urea-ammoniosis of the grades needed for Estonian agriculture, as well as the influence of micronutrients on the guality of the products have not been studied yel, we set these problems as objective of the present research.

Materials and Methods

As initial components commercial tertilizers were used annuonium phosphate made from Kola apatite (10.8% N, 51.7% P₂O₅), urea (16.2% N), potassium eitoride (56.5% K₂O), and potassium subplate (18% K₂O) N), potassium eitoride (56.5% K₂O), and potassium subplate (18% K₂O) ground to -1 mm. These fertilizers were mixed during 1 min, the resultant mixture was granulated on a pan granulator by beating it with flatteless gas burner. Granulation occurred within 10-30 min at 90-105°C with a partial melting of the mixture and was accompanied by some volatilization of atmonta. Hot granules were cooled and then stored in hermetic polyetinylene page.

Tallinus Tehnikaölikool. (Tallinne Technicele University), arktedet diablice signification of a second signification.
Talline Estonia
Talline Estonia