Изв. АН Эстонии. Хим., 1990, 39, № 4, 262-264

УДК 541.127.2+546.73:547.565.2

Илле ИОХАННЕС

ВЛИЯНИЕ ПОСТОРОННИХ ЭЛЕКТРОЛИТОВ НА КИНЕТИКУ КОМПЛЕКСООБРАЗОВАНИЯ КОБАЛЬТА С 4-НИТРОЗО--2,5-ДИМЕТИЛРЕЗОРЦИНОМ

 Ille JOHANNES. ELEKTROLÜÜTIDE MÕJU KOOBALTI JA 4-NITROSO-2,5-DIMETÜÜLRESORT-SIINI VAHELISE KOMPLEKSI MOODUSTUMISE KINEETIKALE
Ille JOHANNES. THE EFFECT OF ELECTROLYTES ON THE KINETICS OF THE FORMATION OF THE COMPLEX OF COBALT WITH 4-NITROSO-2,5-DIMETHYLRESORCINOL

(Представил Ю. Канн)

В [¹] выдвинуто предположение, что в слабокислой среде катион кобальта образует с 4-нитрозо-2,5-диметилрезорцином (AH) внутрисферный красный комплекс [Co(III) $A_2(H_2O)_{n-2}$]A (CoA₃) в основном через не отличающийся по цвету от реагента внешнесферный комплекс [Co(II) (H₂O)_n]A₂ (CoA₂). Поэтому скорость образования CoA₃ в зависимости от спектрофотометрически установленных концентраций кобальта и AH подчиняется кинетическому уравнению псевдочетвертого порядка со ступенчато понижающейся константой скорости.

Известно, что ионная среда может влиять на константу устойчивости комплексов и константу скорости комплексообразования как в результате изменения коэффициентов активности, так и путем специфического взаимодействия между комплексообразующими реагентами и «посторонними» электролитами. В [¹] для регулирования рН использовали ацетатный буфер при ионной силе 0,005. Одной из возможных причин ступенчатого образования СоА₃ может быть связывание части кобальта в исходном растворе в ацетатный комплекс. Для проверки этой гипотезы исследовали влияние ацетата, хлорида, нитрата и сульфата щелочных металлов на кинетику образования СоА₃.

Экспериментальная часть. Концентрация кобальта в исследуемых исходных растворах была 0,2 моль/м³, концентрация АН, эквивалентная кобальту, — 0,6 моль/м³, концентрация ацетат-, хлорид-, нитрат- или сульфат-ионов — 5, 10, 100 и 500 г-экв/м³. Температура растворов — 20—22 °C.

Исходные растворы получали смешением аликвотов 0,02 М раствора АН и 2 н. раствора CH₃COOH, HCl, HNO₃ или H₂SO₄ с последующим доведением pH среды 2 н. раствором NaOH до величины 5,0 и объема раствора в мерной колбе до метки. Началом реакции считали момент прибавления к полученному раствору 0,1% (по объему) 0,2 М раствора сульфата кобальта. Зависимость изменения оптической плотности от времени измеряли на спектрофотометре SPEKOL 11 с кюветами 10 мм при 540 нм. Величину pH растворов измеряли на приборе pH-262.

Концентрацию кобальта [Co²⁺], не связанного в данный момент в комплекс CoA₃, рассчитывали по измеренным оптическим плотностям с помощью уравнения (1) из [¹].

Обсуждение результатов. Во всех проведенных опытах наблюдалось, аналогично [¹], две стадии образования СоА₃. На обеих стадиях кинетика реакции описывается линейной зависимостью между [Со²⁺]⁻³ и временем, причем на первой стадии скорость реакции всегда выше, чем на второй (рисунок). В кривых концентрации кобальта эта двухстадийность наиболее ярко выражается в случае растворов ацетата натрия (рис. а), в присутствии которого величина pH в процессе не меняется. В случае растворов нейтральных электролитов, не обладающих буферной емкостью (рис. б, в, г), двухстадийность процесса явно отражается на кривых pH. Кривые же [Co²⁺]⁻³ теряют четкую ступенчатость из-за повышения кислотности среды в ходе первой стадии процесса.

Полученные результаты свидетельствуют о том, что все исследованные электролиты понижают скорость образования CoA₃. Это влияние солей повышается в ряду CH₃COONa<KCl<NaNO₃<Na₂SO₄. Аналогичный ряд CH₃COO⁻<Cl⁻<NO⁻₃ обнаружен ранее при исследовании влияния солей щелочных металлов на степень экстракции в органическую фазу тройного соединения кобальта, нитрозо-*R*-соли и цетилпиридиния [²]. Неодинаковое влияние отдельных электролитов указывает на то, что в данных системах наряду с понижением коэффициентов активности появляется специфическое взаимодействие между реагентами и «посторонними» электролитами.

Изменение во времени после начала реакции образования CoA₃ pH (кривые 1—4) и [Co²⁺]⁻³ (кривые 1'—4') в присутствии ацетата натрия (а), нитрата натрия (б), хлорида калия (в) и сульфата натрия (г) в концентрациях 5 (кривые 1, 1'), 10 (кривые 2, 2'), 100 (кривые 3, 3') и 500 г-экв/м³ (кривые 4, 4'). Концентрация [Co²⁺]₀=0,2 моль/м³, [AH]₀=0,6 моль/м³.

Совпадение кривых кобальта при концентрациях 5 и 10 моль/м³ ацетата (рис. а, кривые 1' и 2'), а также хлорида (рис. в, кривые 1' и 2') свидетельствует о том, что при концентрации кобальта 0,2 моль/м³ и концентрации АН 0,6 моль/м³ электролиты, вводимые в раствор для регулирования рН ацетатным буфером, хлористоводородной кислотой и щелочью до ионной силы 0,01 (10 моль/м³), результатов опыта практически не искажают.

Наблюдаемое в опытах повышение величины pH среды с повышением концентрации нейтральных электролитов (рис. б) объясняется малой устойчивостью внешнесферного комплекса CoA₂. Сдвиг равновесия образования CoA₂ в сторону диссоциации комплекса из-за конкуренции посторонних анионов, естественно, замедляет и образование CoA₃.

Таким образом, установлено, что в присутствии ацетат-, хлорид-, сульфат- и нитрат-ионов сохраняется двухстадийный механизм образования CoA₃ через ионный ассоциат CoA₂ [¹], но скорость образования CoA₃ уменьшается.

ЛИТЕРАТУРА

- 1. Иоханнес И., Мельдер Л. Кинетика образования тройного комплекса кобальта с 4-нитрозо-2,5-диметилрезорцином и додециламином // Изв. АН Эстонии. Хим., 1990, **39**, № 4, 227—234.
- 1990, 39, № 4, 227—234. 2. Тананайко М. М., Тодрадзе Г. А., Стецюра Н. А. Реакция кобальта(II) с нитрозо-*R*-солью и хлоридом цетилпиридиния // Укр. хим. ж., 1986, 52, № 6, 629—633.

Институт химии Академии наук Эстонии Поступила в редакцию 24/IV 1990