Изв. АН Эстонин. Хим., 1989, 38, № 4, 274—278 https://doi.org/10.3176/chem.1989.4.09 УДК 553.982 : 547.495.2 : 543.42 : 543.54

Сайма САЛУСТЕ, Евгения БОНДАРЬ, И. БЛЯХИНА

ВЫДЕЛЕНИЕ ПОЛИЦИКЛИЧЕСКИХ НАФТЕНОВ И РАЗ-ВЕТВЛЕННЫХ АЛКАНОВ ИЗ СМЕСИ ИХ С *н*-АЛКАНАМИ МЕТОДОМ КОМПЛЕКСООБРАЗОВАНИЯ С МОЧЕВИНОЙ

В органической геохимии полициклические нафтены (стераны и тритерпаны) и метилразветвленные алканы относят к «биологическим меткам» первого порядка, которые при изучении фоссилизированного органического вещества на молекулярном уровне несут важную геохимическую информацию о его биологических предшественниках и превращениях в земной коре. Важная роль отводится стеранам и тритерпанам при проведении генетических корреляций между нефтематеринскими породами и нефтями: методом хромато-масс-спектрометрии с компьютерным обеспечением изучаются и сравниваются их состав и соотношение стереоизомеров в нефти и в экстрагируемой части органического вещества (битумоиде) породы. Как показали исследования последних лет, под воздействием геотермического градиента (при глубоком погружении) или тепла магматических интрузий горючие сланцы генерируют нефть [¹].

Содержание стеранов и тритерпанов в битумоидах горючих сланцев достаточно для их детального исследования методом хромато-массспектрометрии [²], в нефтях оно значительно ниже, и требуется предварительное концентрирование этих полициклических нафтенов. Этого можно достигнуть выделением *н*-алканов — основных компонентов большинства нефтей, для чего в лабораторной практике широко используется метод комплексообразования с мочевиной [³].

Для протекания реакции в направлении образования комплекса включения *н*-алканов в систему гексагональных каналов в кристаллах мочевины необходимо три условия: 1) применение инертного растворителя, 2) добавление активатора, 3) обеспечение низкой температуры процесса. Требуется такое количество мочевины, которого достаточно для выделения *н*-алканов и для насыщения раствора: m = 0,653n + 1,51, где m — число молей мочевины, n — среднее число атомов углерода в молекуле *н*-алкана [³].

При разделении нейтральной части битумоидов сланцев методом препаративной тонкослойной хроматографии (TCX) [4] полициклические нафтены выделяются в смеси с н-, и изоалканами (алкановая TCXфракция). Для получения сопоставимых результатов методику анализа битумоидов горючих сланцев использовали и при исследовании нефтей [⁵], в результате чего были получены алкановые TCX-фракции, содержащие вместе с нефтяными н- и изоалканами полициклические нафтены. Эти фракции и подвергали комплексообразованию, так как они не содержат ароматических углеводородов, которые могут адсорбироваться на поверхности реагентов и снижать эффективность комплексообразования.

Методика эксперимента

С помощью модельной смеси *н*-алканов С₁₀, С₁₁, С₁₃, С₁₄, С₂₃ (соответственно 21, 21, 24, 26, 6%) были определены условия комплексообразования:

масса	пробы		0,05 г	объем	метанола	-	2,0	МЛ	
масса	мочевины	-	2,0 г	объем	н-пентана	-	5,0	мл	

Пробу (алкановую TCX-фракцию нефти) растворяли в *н*-пентане при комнатной температуре, добавляли мочевину. Затем полученную смесь при постоянном перемешивании охлаждали до 0°С, порциями добавляли 2 мл активатора (метанола) и продолжали комплексообразование в течение 3 ч. Образовавшийся комплекс отделяли через стеклянный фильтр, промывали охлажденным *н*-пентаном, а затем разлагали горячей водой (60—80 °С) и отделяли высвободившиеся *н*-алканы. Водную фазу дважды экстрагировали диэтиловым эфиром, экстракты прибавляли к основной порции *н*-алканов, сушили безводным сульфатом натрия, фильтровали и отгоняли диэтиловый эфир. От остатка комплексообразования, в котором содержатся полициклические нафтены, отгоняли *н*-пентан.

Газохроматографический анализ проводили на приборе «Хром-41» в условиях программирования температуры. Газ-носитель — гелий. ИКспектры снимали на спектрофотометре «Specord 75 IR».

Результаты и их обсуждение

Материальные балансы опытов по комплексообразованию с мочевиной алкановых TCX-фракций 27 образцов конденсатов и нефтей Бухаро-Хивинской нефтегазоносной области приведены в таблице. *н*-Алканы, включившиеся в комплекс с мочевиной, и остатки комплексообразования охарактеризованы ГЖХ (рис. 1, 2) и ИК-спектроскопией (рис. 3).

Судя по представленным данным, в случае конденсатов комплексообразование проходит слабо, так как они содержат низкомолекулярные гомологи н-алканов, а н-алканы до С12 плохо включаются в комплекс с мочевиной. С ростом плотности нефтей (в таблице они расположены в порядке возрастания этого показателя) увеличивается и степень комплексообразования за счет увеличения содержания в них более высокомолекулярных

н-алканов.

Рис. 1. Хроматограммы алкановой ТСХ-фракции нормальной нефти (обр. 9) (а), *н*-алканов (б) и остатка комплексообразования с мочевиной (в). Цифры у пиков соответствуют числу атомов углерода в молекуле *н*-алкана. Изопреноиды обозначены индексом *i*. Колонки: а — 49 м×0.25 мм, OV-101; б, в — 3,7 м×3 мм, 4% E-301 на хроматоне N AW HMDS, 0,125—0,160 мм (здесь и на рис. 2).

44

Материальные балансы опытов по комплексообразованию с мочевиной

No.No. II/II	Homep oбp.	Характер образца	Выход ТСХ 1, % от пробы	Навеска ТСХ 1, г	Kl, r	К2, г	K1, %	K2, %	Потери, %	К1, отн. %	К2, отн. %	К1 _и , %	К2", %
1	2	VOUTOUCOT	100.0	1 8852	0.0339	1 0767	1.8	57.1	41.1	3.1	96.9	3.1	96.9
2	1	Kongenear	100,0	1,2234	0.1280	0.6764	10.5	55.3	34.2	15.9	84.1	15.9	84.1
3	31		77.2	0.2585	0.0453	0.1294	17.5	50,1	32.4	25,9	74.1	20,0	57.2
4	3	EX.90 B BEAR	68.6	0,1926	0.0295	0.1269	15.3	65.9	18,8	18,9	81,1	13,0	55,6
5	5	,,	60.8	0.0951	0.0225	0,0642	23,7	67,5	8,8	26,0	74,0	15,8	45,0
6	4		63.8	0.1827	0.0590	0.1163	32,3	63,7	4,0	33,7	66,3	21,5	42,3
7	32		52,6	0,0463	0,0148	0,0295	32,0	63,7	4,3	33,4	66,6	17,6	35,0
8	30	RET. U. 1	63,9	0,2364	0,0820	0,1564	34,7	66,2	+0,9	34,4	65,6	22,0	41,9
9	11	GERMAN	55,3	0,1689	0,0311	0,0852	18,4	50,4	31,2	26,7	73,3	14,8	40,5
10	6	RAANIDE.	56,6	0,1700	0,0765	0,1212	45,0	71,3	+16,3	38,7	61,3	21,9	34,7
11	7	FT, IRTA	53,9	0,1167	0,0328	0,0829	28,1	71,0	0,9	28,3	71,7	15,3	38,6
12	16	,Kano	65,5	0,2090	0,0636	0,1236	30,4	59,1	10,5	34,0	66,0	22,3	43,2
13	10		54,1	0,1689	0,0556	0,1077	32,9	63,8	3,3	34,0	66,0	18,4	35,7
14	12	N LO X LO X LO X	52,8	0,1736	0,0412	0,1272	23,7	73,3	3,0	24,5	75,5	12,9	39,9
15	17	,,	51,7	0,1652	0,0343	0,1169	20,8	70,8	8,4	22,7	77,3	11,7	40,0
16	18	**	51,2	0,1420	0,0396	0,0885	27,9	62,3	9,8	30,9	69,1	15,8	35,4
17	8	The second second	54,4	0,1223	0,0347	0,0795	28,4	65,0	6,6	30,4	69,6	16,5	37,9
18	29	,,	45,3	0,1508	0,0367	0,1065	24,3	70,6	5,1	25,6	74,4	11,6	33,7
19	14	,,	37,3	0,1146	0,0209	0,0934	18,2	81,5	0,3	18,3	81,7	6,8	30,5
20	25		41,5	0,1386	0,0368	0,0744	26,6	53,7	19,7	33,1	66,9	13,7	27,8
21	'15		49,9	0,0500	0,0075	0,0256	15,0	51,2	33,8	22,7	77,3	11,3	38,6
22	13	**	45,9	0,0914	0,0148	0,0744	16,2	81,4	2,4	16,6	83,4	7,6	38,3
23	9	a bailing	46,4	0,117.8	0,0178	0,0880	15,1	74,7	10,2	16,8	83,2	7,8	38,6
24	22	высоко-	25,7	0,0449	0,0111	0,0392	24,7	87,3	+12,0	22,1	77,9	5,7	20,0
		вязкая нефть											
25	19	n der Fla	28.8	0.0466	0.0159	0.0333	34.1	71.5	+5.6	32,3	67.7	9.3	19,5
26	20	sklugeller	21,5	0.0744	0.0261	0,0519	35.1	69.8	+4.9	33.5	66.5	7,5	14,0
27	21	K "rekti	27,1	0,0482	0,0243	0,0355	50,4	73,7	+24,1	40,6	59,4	11,0	16,1

Примечание: TCX 1 — алкановая TCX-фракция нефти (конденсата), К1 — комплекс включения, К2 — остаток комплексообразования, К1_в, К2_в — в пересчете на нефть (конденсат).

Хроматограммы соединений, не образовавших комплекса с мочевиной, отличаются от хроматограмм *н*-алканов наличием значительного нафтенового фона («горба»), образованного неразделенными нафтеновыми углеводородами, относительное содержание которых в нормальной нефти (обр. 9) выше, чем в высоковязкой (обр. 20) (рис. 1 и 2).

В ИК-спектрах соединений, образовавших комплекс с мочевиной, выше относительная интенсивность полосы поглощения при 725 см⁻¹ (СН₂-группы в длинных алифатических цепях), а в остатках комплексообразования — при 1380 см⁻¹ (СН₃-разветвление цепи) и при 1450 см⁻¹ (СН₂-группы в алициклах, на что указывает сдвиг их полосы поглощения от 1460 см⁻¹ в более низкочастотную область) (рис. 3).

Таким образом, достигнуто удовлетворительное выделение *н*-алканов из алкановых TCX-фракций 27 образцов нефтей, в результате чего сконцентрированы разветвленные и полициклические углеводороды в целях их дальнейшего детального исследования методом хромато-массспектрометрии.

ЛИТЕРАТУРА

- 1. Бондарь Е., Клесмент И. Нефти, образующиеся из сапропелитовых топлив в естест-
- Володря Е., Клескиен И. пефти, образующиеся из сапропелитовых топлив в естест-венных и геотехнологических условиях // VI Нефтехимический симпозиум социа-листических стран. Мат-лы симп., III. Козубник, Польша, 1988, 640—654. Бондарь Е., Куузик М., Осилов Г. Тетра- и пентациклические углеводороды в биту-моиде горючего сланца Красава (НР Болгария) // Изв. АН ЭССР. Хим., 1985, 35, № 4, 245—254. 2.
- 3. Руководство по анализу нефтей. Л., 1966.
- 4. Klesment, I. Application of chromatographic methods in biogeochemical investigations // J. Chromatogr., 1974, 91, N 2, 705-713. 5. Бондарь Е. Б., Салусте С. Я., Битюков М. М. Применение методики исследования
- органического вещества горючих сланцев для анализа нефтей // Горючие сланцы (в печати).

Институт химии Поступила в редакцию Академии наук Эстонской ССР

2/II 1989

Saima SALUSTE, Jevgenia BONDAR, I. BLJAHHINA

POLÜTSÜKLILISTE NAFTEENIDE JA HARGNENUD ALKAANIDE ERALDAMINE NENDE JA *n*-ALKAANIDE SEGUST KARBAMIIDI KOMPLEKSIMOODUSTAMISE MEETODIGA

Öhukese kihi kromatograafilise meetodiga eraldati 27 naftaproovist alkaanide fraktsioon. Seda rikastati polülsükliliste nafteenide ja hargnenud alkaanidega *n*-alkaanide suhtes karbamiidi kompleksi moodustamisega, et detailselt uurida polütsüklilisi nafteene (steraane ja triterpaane) kromatomassi-spektromeetrilise meetodi abil.

Saima SALUSTE, Eugenia BONDAR, I. BLYAKHINA

SEPARATION OF POLYCYCLIC NAPHTHENES AND BRANCHED ALKANES FROM *n*-ALKANES BY UREA ADDUCTION

The satisfactory concentration of polycyclic naphthenes and branched alkanes of 27 oil samples has been obtained due to the separation of *n*-alkanes by urea adduction for the following detailed investigation of polycyclic naphthenes (steranes and triterpanes) by computerized gas chromatography-mass spectrometry.