1988, 37, 4

УДК 543.544.45:547.31

Г. ГУСЕВ, Сильвия РАНГ, Анне ОРАВ

ВЛИЯНИЕ АДСОРБЦИОННЫХ ЭФФЕКТОВ НА ТЕМПЕРАТУРНУЮ ЗАВИСИМОСТЬ ИНДЕКСОВ УДЕРЖИВАНИЯ ИЗОМЕРОВ *н*-тетрадецена

G. GUSSEV, Silvia RANG, Anne ORAV. ADSORPTSIOONIEFEKTIDE MÕJU n-TETRADETSEENI ISOMEERIDE RETENTSIOONIINDEKSITE TEMPERATUURISÕLTUVUSELE

G. GUSSEV, Silvia RANG, Anne ORAV. THE EFFECT OF ADSORPTION ON THE TEMPERATURE DEPENDENCE OF n-TETRADECENE ISOMERS

(Представил О. Эйзен)

В [¹] было получено линейное уравнение, связывающее логарифмические индексы удерживания с обратной величиной толщины пленки неподвижной жидкой фазы (НЖФ), и вычислены инвариантные индексы удерживания некоторых позиционных изомеров *н*-тетрадецена на стеклянных капиллярных колонках (СКК) с различной средней толщиной ПЭГ 20М. Предполагалось, что внутренняя поверхность СКК близка к идеально гладкой, а НЖФ нанесена равномерно. Приняв эти предположения, среднюю толщину пленки d_i при статическом нанесении фазы можно рассчитать по формуле

$$d_{\mathbf{f}} = (c_{\mathbf{f}} \cdot d_c) / 4, \tag{1}$$

где d_c — внутренний диаметр капилляра, c_f — объемная концентрация НЖФ в растворителе, %.

С другой стороны, из уравнения [1]

$$I_i = I_{0,i} + (\delta_i/d_i), \tag{2}$$

где I_i — экспериментально определенный индекс удерживания для конкретной колонки, $I_{0, i}$ — инвариантный индекс удерживания, δ_i — адсорбционный инкремент, можно определить d_i при известных I_i , $I_{0, i}$ u δ_i :

$$d_{t} = \delta_{i} / (I_{i} - I_{0, i}). \tag{3}$$

Инвариантный индекс удерживания $I_{0,i}$ является функцией хроматографических констант и зависит только от констант распределения хроматографируемого вещества и стандартов (*н*-алканов) для данной НЖФ. Адсорбционные инкременты δ_i учитывают вклад в индексы удерживания адсорбции хроматографируемого вещества и стандартов на поверхности раздела газ—НЖФ. Поэтому при известных $I_{0,i}$ и δ_i эффективная толщина пленки, определенная по уравнению (3), не зависит от геометрии внутренней поверхности капилляра. С помощью уравнения (3) можно определять толщину пленки НЖФ на капиллярах с шероховатой поверхностью и хроматографических носителях, имеющих нерегулярную и пористую структуру.

Известно, что внутренняя поверхность металлических капилляров далека от идеальной, она имеет сильно развитую систему мелких трещин, морщин и других неровностей, величина которых достигает 1—2% диаметра капилляра [²]. Тем не менее уравнение (1) часто используется для определения толщины слоя НЖФ и для металлических капилляров. Сравнение величин d_i, рассчитанных по уравнениям (1) и (3), позволяет оценить погрешность определения d_i при пренебрежении геометрической структурой внутренней поверхности стальных капилляров.

Результаты и их обсуждение. Расчет по уравнению (1) толщины пленок НЖФ в капиллярных колонках из нержавеющей стали, полученных статическим или динамическим способом нанесения НЖФ, может приводить к существенным ошибкам из-за адсорбции ненасыщенных углеводородов на внутренней металлической поверхности капилляра. Так, для 1-й колонки эта величина составила 0,1 мкм, для 2-й колонки — 0,2 мкм, для 3-й — 0,34 мкм, для 4-й — 0,24 мкм, для 5-й — 0,16 мкм, для 6-й — 0,11 мкм. Эти результаты показывают, что использование уравнения (1), не учитывающего шероховатость внутренней поверхности стального капилляра, приводит к большой ошибке (~30%) применительно к использованному в данной работе капилляру (табл. 1, 2).

Таблица 1

Изомеры <i>н</i> -тетрадецена	Колонка 1			Ko.	CKK*					
	<i>d_f</i> , мкм									
	0,075			unisasin.	0,11 0,2					
	I _{90 °C}	I _{100 °C}	$\delta I/\delta T$	I _{90 °C}	I _{100 °C}	$\delta I/\delta T$	$\delta I/\delta T$	$\delta I/\delta T$		
1-Тетрадецен <i>транс-2-</i> <i>транс-3-</i> <i>транс-4-</i> <i>транс-5-</i>	1431,2 1442,7 1426,7 1419,7 1418,3	1433,6 1445,3 1429,0 1421,7 1420,6	$0,24 \\ 0,24 \\ 0,23 \\ 0,20 \\ 0,23$	1440,8 1454,1 1435,7 1427,2 1425,7	1442,4 1455,9 1437,0 1428,4 1427,4	0,16 0,18 0,13 0,12 0,17	0,11 0,13 0,07 0,12 0,11	0,10 0,09 0,05 0,09 0,11		
транс-6- транс-7- цис-5- цис-6- цис-7-	$1415,3 \\ 1415,2 \\ 1415,2 \\ 1417,0 \\ 1413,4 \\ 1411,6$	$1417,8 \\ 1417,2 \\ 1420,0 \\ 1416,2 \\ 1414,6$	0,25 0,20 0,30 0,28 0,30	$1422,9 \\ 1422,1 \\ 1425,8 \\ 1422,8 \\ 1419,9$	$1424,5 \\ 1423,5 \\ 1428,0 \\ 1424,2 \\ 1422,2 \\ 142,2 \\ 142,2 \\ 142,2 \\ 142,2 \\ 142,2 \\ 142,2 $	$\begin{array}{c} 0,11\\ 0,16\\ 0,14\\ 0,22\\ 0,14\\ 0,23 \end{array}$	0,19 0,10 0,11 0,19 0,18	0,11 0,10 0,14 0,15 0,19 0,16		

Индексы удерживания *I* и их температурные инкременты для *н*-тетрадеценов на ПЭГ 20М

* Данные для СКК, взятые из [1], включены в таблицу для сравнения.

Таблица 2

Индексы	удерживания I	И	их	темп	ерату	рные	инкременты	для
	н-тетрад	len	ено	в на	ПЭГ	20M		

Изомеры <i>н</i> -тетрадецена	Колонка З		Колонка 4		Колонка 5		Колонка 6			
	d _f , мкм									
	0,24*		0,2	1	0,1	2	0,10			
	I70° C	$\delta I/\delta T$	I70° C	$\delta I/\delta T$	I70° C	$\delta I/\delta T$	I70° C	$\delta I/\delta T$		
1-Тетрадецен	1442,9	0.07	1441.7	0,16	1434,7	0,20	1431,4	0,54		
транс-2-	1456,2	0,04	1455.5	0.15	1447,1	0,24	1443,3	0,38		
транс-3-	1437,9	0,03	1436.8	0.12	1430,3	0,17	1428,3	0,48		
транс-4-	1428,5	0,05	1428,0	0,12	1422,3	0,15	1419,9	0,48		
транс-5-	1426,9	0,07	1425,6	0,12	1420,6	0,13	1418,6	0,56		
транс-6-	1423,4	0,07	1422,8	0.12	1418,3	0,36	1415,3	0,70		
транс-7-	1423,0	0.08	1421.6	0.20	1417,3	0,34	1414,7	0,44		
uuc-3-	1441,4	0.09	1440,0	0,14	1432,7	0,28	1429,1	0,35		
uuc-4-	1432,0	0,12	1431.1	0.20	1424,4	0,22	1422,3	0,58		
uuc-5-	1425.3	0,12	1424,6	0,21	1418,6	0,24	1416,1	0,50		
цис-6-	1422,2	0,13	1421,4	0,22	1415,2	0,36	1411,7	0,28		
цис-7-	1419,7	0,12	1418,5	0,30	1412,2	0,34	1410,0	0,34		

* При вычислении df по уравнению (3) использовали значения Io, и bi из [1],

Взаимодействие с внутренней поверхностью капиллярной колонки из нержавеющей стали увеличивает температурную зависимость индексов удерживания изомеров н-тетрадецена (причем для цис-изомеров в большей степени) по сравнению со стеклянными капиллярными колонками (табл. 1, 2). Это позволяет сделать вывод о том, что температурная зависимость индексов удерживания обусловлена не только термодинамикой взаимодействия сорбат—НЖФ, но и адсорбционными эффектами на границе поверхность капилляра-НЖФ. Уменьшение толщины пленки в два раза для стального капилляра приводит к увеличению значений инкрементов температурной зависимости приблизительно в 1,5 раза. Для СКК такой зависимости не наблюдается, что свидетельствует о большей инертности стеклянных капилляров.

Экспериментальная часть. На внутреннюю поверхность колонок из нержавеющей стали (50 м×0,25 мм) наносили ПЭГ 20М высокотемпературным способом из метанольного раствора. Для приготовления колонки 1 использовали раствор НЖФ с концентрацией 1,6 · 10-3% об., а колонки 2 — 3,2 · 10⁻³% об. Плотность ПЭГ 20М принята равной 1 г/см³. Использовали хроматограф «Биохром-1». Газом-носителем служил водород. Времена удерживания исследуемых соединений измеряли электронным интегратором «Perkin Elmer M-1» (США) с точностью 1 с. Деление потоков составляло ~1:150. «Мертвое» время удерживания определяли расчетным способом по временам удерживания н-алканов.

ПЭГ 20М наносили на внутреннюю поверхность колонок 3—6 (50 м 🗙 ×0,25 мм) динамическим методом с использованием 1—5%-ных растворов НЖФ в хлороформе [³]. Индексы удерживания измеряли на хроматографе «Хром-5». Газом-носителем служил гелий. Деление потоков составляло ~1:150.

ЛИТЕРАТУРА

1. Гусев Г., Ранг С., Березкин В., Орав А. Учет адсорбционных эффектов при определении индексов удерживания углеводородов в капиллярной газожидкостной хроматографии. — Иъв. АН ЭССР. Хим., 1986, **35**, № 3, 205—210. 2. Руденко Б. А. Капиллярная хроматография. М., 1978, 81. 3. Орав А., Кунингас К., Ранг С., Эйзен О. Разделение н-тридеценов, н-тетрадеценов и

- н-алкинов С₁₀—С₁₄ на капиллярных колонкех с полиэтиленгликолем 20М раз-ной полярности. Изв. АН ЭССР. Хим., 1985, **34**, № 2, 105—113.

Волгодонский филиал ВНИИПАВ

Поступила в редакцию 5/V 1988

Институт химии Академии наик Эстонской ССР