1988, 37, 4

УДК, 547.322

Эльви МУКС, Маргарита РАЙЛЯН, Сигне ТЕНГ, А. ЭРМ, К. ЛЭЭТС

АЛЛИЛЬНЫЕ ХЛОРИДЫ В КАЧЕСТВЕ ТАКСОГЕНОВ ПРИ КАТИОННОЙ ТЕЛОМЕРИЗАЦИИ

Предыдущими исследованиями процессов катионной теломеризации установлен ряд закономерностей в поведении изоолефинов как таксогенов и аллильных галогенопроизводных как телогенов [^{1–7}]. Цель настоящей работы — выявление поведения β-хлорзамещенных изоалкенов (аллильных хлоридов) в качестве таксогенов при реакциях катионной теломеризации и сотеломеризации.

Вначале исследовались реакции гомотеломеризации наиболее активных аллильных хлоридов, являющихся и изоалкенами. Данные по содержанию хлора в продуктах (табл. 1) и ГЖХ-анализ аддуктов показали, что во всех изученных случаях, кроме 1-хлор-3-метил-2-бутена (I), гомотеломеризация сопровождается образованием дегидрохлорированных продуктов. Гомотеломеризация хлорида (I) протекает с наибольшей скоростью, и дегидрохлорированного продукта образуется не более 10%. В основном получаются гомоаддукт 2-хлор-3-хлорметил-2,6-диметил-5-гептен (II) и высшие продукты.

Далее, для установления закономерностей образования высших продуктов исследовалось изменение относительного содержания моно- и полиаддуктов в зависимости от степени конверсии. Уменьшение содержания моноаддукта в теломере (табл. 1 и 2) показывает, что высшие продукты образуются за счет вторичной реакции моноаддуктов в качестве таксогенов. Экстраполяция этих данных на нулевую степень конверсии показывает, что скорость роста цепи ничтожна.

Таблица 1

	The Party Street of the		Теломер		
Аллильное производное **	Концент- рация SnCl ₄ , моль/л	Время, мин	выход, %	содер- жание хлора, %	содержа- ние димер- ной фрак- ции, %
$(CH_3)_2C = CHCHClCH_3$ $(CH_3)_2C = C(CH_3)CH_2Cl$ $(CH_3)_2C = CHCH_2Cl$ $OH \ $ $M \ $ $M \ $ $OH \ $ $ME \ $ $OH \ $ $OH \ $ $ME \ $ $OH \ $	0,006 0,026 0,015 0,014 0,018 0,018 0,018	43 23 5 15 5 13 19	39 25 16 23 35 55 17	20,8 26,4 31,1 31,6 33,9 32,5 27,0	59 58 65 55 35 27 52

Гомотеломеризация аллильных хлоридов *

* Гомотеломеризация 4-хлор-2,4-диметил-2-пентена и 2-хлор-3-пентена протекает с побочным отщеплением хлористого водорода [^{6, 7}].

Использовались кинетически равновесные смеси аллильных изомеров [3, 5].

Таблица 2

Теломеризация 3-хлор-2-метил-1-пропена (IIIг) с аллильными хлоридами

Телоген	Концент- рация Вр SnCl ₄ , м моль/л	Sec. Astro	ремя, Выход тело- мин %	Фракция моноаддуктов		
		Время, мин		выход от тело- мера, %	содер- жание хлора, %	состав по ГЖХ, %
$(CH_3)_2C = CHCH_2CI$	0.009	27	16	65	35.1	II 57: IVr 35
он же	0,014	17	24	55	35,0	II 55; IVr 35
он же	0,016	45	39	36	34,2	II 54: IVr 34
$CH_3CH = CHCH(CH_3)Cl$	0,009	33	27	92	35,2	V 98*
он же	0,017	24	50 .	88	35.3	V 98*
он же	0,021	20	65	85	34,9	V 98*

* Эритро- и трео-изомеры 1,2-дихлор-2,4-диметил-5-гептена (V).

Таким образом, можно сказать, что при сотеломеризации изоалкена и аллильного хлорида (I) (схема) образуются, главным образом, моноаддукты (II) и (IV) (являются 2-метил-2-алкенами), которые вступают во вторичную теломеризацию с близкими скоростями (заместители в положениях 5 и 6 оказывают незначительное влияние [⁸]). При этом относительный выход гомоаддукта (II) зависит от активности алкена.

IIIа и IVa: R=H; R¹, R²=CH₃; IIIб и IVб: R, R¹, R²=CH₃; IIIв и IVв: R, R¹=H; R²=CH(CH₃)₂; IIIг и IVr: R, R¹=H; R²=CH₂Cl.

В табл. З приведены данные относительного содержания аддуктов (II) и (IV), определенные в теломеризате методом ГЖХ. В литературе часто приводятся данные фракционирования теломеров и хроматографирования низших аддуктов. Данные теломеризации изоолефинов (IIIа в) с хлоридом (I) [^{1, 3, 9}] показывают, что полученные значения относительного содержания дихлорида (II) в среднем в 1,5 раза ниже по сравнению с данными табл. З. По-видимому, при фракционировании теломеров небольшое количество вышекипящего дихлорида не перегонялось.

Поскольку при небольших степенях конверсии изменение соотношения исходных реагентов незначительно, то относительный выход аддуктов (II) и (IV) определяется соотношением констант k_j/k_x . Данные табл. 3 показывают постоянное соотношение аддуктов (II) и (IV) даже до умеренных степеней конверсии. Изученные изоалкены по относительным скоростям образования моноаддуктов при небольших степенях конверсии располагаются в следующий ряд:

Таблица 3

Сотеломеризация	я 1-хлор-3-метил-2-бутена	(1)
и алкенов	IIIа-г) с хлоридом (I)	

Алкен	Молярное соотношение I : III	Конверсия, %	Относительное содержание по ГЖХ II : IV	
$(CH_3)_2C = C(CH_3)_2$ (III6)	1,98 : 1 1,99 : 1 2,08 : 1	9 21 15	8,5 : 91,5 9,0 : 91,0 8,3 : 91,7	
$CH_3CH = C(CH_3)_2$ (IIIa)	1,51 : 1 1,51 : 1 2,01 : 1	10 15 12	7,2:92,8 7,1:92,9 10:90	
$CH_2 = C(CH_3)CH(CH_3)_2$ (IIIB)	2,80 : 1 2,80 : 1 1,59 : 1	8 28 10	40 : 60 42 : 58 31 : 69	
$CH_2 = C(CH_3)CH_2Cl$ (IIIr)	1 : 2 1,01 : 1 1,00 : 1	11 24 9	43 : 57 60 : 40 61 : 39	

Небольшое влияние побочных (дегидрохлорирование 2—8%) и вторичных процессов на соотношение моноаддуктов, а также невысокая точность хроматографирования позволяют считать полученные значения только приблизительно соответствующими значениям реакционных способностей алкенов.

Результаты работы указывают на влияние стерических препятствий при образовании продуктов присоединения к β-хлорзамещенным изоалкенам, как и в случае изоолефинов [¹]. Образование продуктов с несколькими три- и тетразамещенными углеродными атомами в соседних положениях приводит к понижению скорости реакции и «нежеланию» полимеризоваться, но при этом относительная скорость побочных направлений (перераспределение галогеноводорода) увеличивается. Установлено, что при реакциях изоалкенов с аллильным хлоридом (I) на основе относительного содержания дихлорида (II) можно оценить относительную реакционную способность алкена.

Экспериментальная часть

Исходные вещества получили и подготовили по ранее описанной методике [^{1,3}]. 2,3-Диметил-1-бутен (IIIв) получили дегидратацией 2,3диметилбутан-2-ола, который готовили по Гриньяру из изопропилбромида и ацетона [^{1,10}]. Ректификацией выделили алкен (IIIв) с чистотой 98,5% по ГЖХ: темп. кип. 55,0°С, d_4^{20} 0,6869, n_D^{20} 1,3871. 3-Хлор-2--метил-1-пропен (IIIг) получили фракционированием реактива фирмы MERCK с чистотой 98,5% по ГЖХ: темп. кип. 72,2°С, n_D^{20} 1,4270.

Опыты по теломеризации проводили с эквимолярными количествами исходных реагентов с добавлением определенного количества 2—6%-ного раствора SnCl₄ в 1,2-дихлорэтане при интенсивном перемешивании, поддерживая температуру в колбе 22—24 °С. Методика выделения и анализа продуктов описана в [⁵]. Данные приведены в табл. 1 и 2. Опыты по определению относительных активностей (табл. 3) проводили по ранее разработанной методике с использованием ГЖХ [⁴]. При этом в реакционную смесь взвешивали 6—10% о-дихлорбензола или хлористого бензила и по площади их пиков на хроматограммах вычисляли степень конверсии реагентов. Относительные времена удерживания моноаддуктов при 60 °С следующие: (II) 3,63, (IVr) 1,78, хлористый бензил 1,87, (IVв) 1,12, (IV6) 0,97, о-дихлорбензол 1,00, (V) 1,10 и 0,78 (диастерео-

2 ENSV TA Toimetised. K 4 1988

изомеры), (IVa) 0,58. Химическое строение моноаддуктов (II, IVа-в) установлено ранее [1, 3, 9]. ПМР-спектры моноаддуктов (IVr) и (V) характеризуются следующими значениями химических сдвигов, м. д. относительно тетраметилсилана: 1,55—1,70 СІССН₃, 1,65—1,75 == ССН₃, 1,9-2,5 CH₂, 3,70 CH₂Cl, 5,0-5,2 == CH для (IV г), 5,3-5,5 == CH для (V), 1,05 ССН₃ для (V).

ЛИТЕРАТУРА

- 1. Мукс Э. А., Эрм А. Ю., Лыйвеке И. А., Тенг С. Э., Крумм Л. Л., Лээтс К. В. К
- изучению ионно-каталитической теломеризации. XXV. Стерический эффект алкильных заместителей. Ж. орг. хим., 1988, 24, № 9, 1838—1842. 2. Мукс Э. Сопоставление реакций электрофильного присоединения. Конкурирующие направления, определяемые строением алкена. Изв. АН ЭССР. Хим., 1987, 36, № 2, 103-113.
- 3. Мукс Э. А., Лээтс К. В. К изучению ионно-каталитической теломеризации. XXII. О перераспределении галогеноводорода при теломеризации изоалкенов. - Ж. орг.
- хим., 1985, 21, № 6, 1177—1180. 4. Мукс Э. А., Эрм А. Ю., Лээтс К. В. К изучению ионно-каталитической теломеризации. XXIII. Метод определения относительной реакционной способности гало-
- генопроизводных. Ж. орг. хим., 1986, 22, № 7, 1386—1388. 5. Лээтс К. В., Мукс Э. А. К изучению ионно-каталитической теломеризации. VI. О влиянии строения аллильных изомеров на кинетику и направление реакции. -Ж. орг. хим., 1974, 10, № 2, 162—164.
- 6. Генусов М. Л., Петров А. А. Йонная теломеризация некоторых непредельных соединений с аллильными хлоридами. — Ж. орг. хим., 1965, I, № 12, 2105—2115.
- Mayr, H., Klein, H., Kolberg, G. Lewis-Säure-katalysierte Additionen 1,3-Alkyl-substituierter Allylkloride an Alkene. Chem. Ber., 1984, 117, N 8, 2555—2579.
 Мукс Э., Вийтмаа С., Крумм Л., Лээтс К. Влияние алкильных заместителей в
- у-положении к двойной связи на реакционную способность алкена. Изв. АН ЭССР. Хим., 1986, 35, № 3, 229—230.
 Лээтс К., Ранг Х., Чернышев В., Пехк Т. О составе продукта теломеризации 1-хлор-3-метил-2-бутена с 2,3-диметил-1-бутеном. Изв. АН ЭССР. Хим.,
- 1982, **31**, № 2, 147-148.
- Kistiakowski, C. B., Ruhoff, J. R., Smith, H. A., Vanghan, W. E. Heats of organic reactions. III. Hydrogenation of some higher olefins. J. Amer. Chem. Soc., 1936, 58, 137—145.

Инститит химии Академии наук Эстонской ССР Поступила в редакцию 31/III 1988

Elvi MUKS, Margarita RAILJAN, Signe TENG, A. ERM, K. LÄÄTS

ALLÜÜLSED KLORIIDID TAKSOGEENIDENA KATIOONSE TELOMERISATSIOONI REAKTSIOONIDES

β-kloorasendatud isoalkeenide (allüülsed kloriidid) katioonse telomerisatsiooni reaktsioonides esinevad steerilised takistused, mistõttu praktiliselt ei toimu ahela kasvu reaktsioonid, kuid moodustub dehüdrokloorunud produkte. 1-kloor-3-metüül-2-buteeni reaktsioonil isoalkeenidega võib dimeeri 2-kloor-3-kloormetüül-2,6-dimetüül-5-hepteeni suhtelise sisalduse järgi monoaduktides hinnata alkeenide suhtelist reaktsioonivõimet.

Elvi MUKS, Margarita RAILJAN, Signe TENG, A. ERM, K. LÄÄTS

ALLYLIC CHLORIDES AS TAXOGENS IN CATIONIC TELOMERIZATION

In the title reactions steric hindrances suppress chain growth reactions but contribute to the formation of dehydrochlorinated products. In the reactions of 1-chloro-3-methyl-2butene with isoalkenes the relative reactivity of alkenes may be approximately evaluated on the basis of adduct composition.