EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. КЕЕМIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1987, 36, 4

https://doi.org/10.3176/chem.1987.4.01

УДК 541.123.012.5

Л. КУДРЯВЦЕВА, М. КУУС, Е. ПИОТРОВСКАЯ, Хелле КИРСС

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ СИСТЕМ, СОДЕРЖАЩИХ АЛКЕНЫ, С ПОМОЩЬЮ ГРУППОВЫХ МОДЕЛЕЙ РАСТВОРА

2. КВАЗИХИМИЧЕСКАЯ ГРУППОВАЯ МОДЕЛЬ

(Представил О. Эйзен)

Основой рассматриваемого здесь варианта квазихимической групповой модели [^{1, 2}] послужила теория строго регулярных растворов Гуггенгейма [³], распространенная Дж. А. Баркером на смеси более сложных молекул с учетом их размеров и способа контактирования [^{4, 5}]. Е. А. Гуггенгейм применил положения решеточной теории чистых жидкостей к многокомпонентным смесям, приписав последним квазикристаллическую структуру и распределив молекулы смесей по узлам квазикристаллической решетки с координационным числом *г*. Потенциальная энергия межмолекулярного взаимодействия в растворе складывается из энергии взаимодействия пар ближайших молекул. Связь между наиболее вероятными числами пар устанавливает квазихимическое уравнение

$$\frac{N_{12}}{N_{11}N_{22}} = 4 \exp\left(-\frac{2\omega_{12}}{kT}\right),\tag{1}$$

где k — константа Больцмана, ω_{12} — энергия взаимообмена, удвоенное значение которой характеризует изменение энергии в процессе замены пар

$$1 - 1 + 2 - 2 \rightleftharpoons 2(1 - 2),$$
 (2)

носящем название квазихимической реакции.

Параметр ω_{12} связан с энергиями взаимодействия *и* пар ближайших соседей 1—2

$$\omega_{12} = u_{12} - \frac{u_{11} + u_{22}}{2} . \tag{3}$$

Теория связывает его также с избыточными термодинамическими функциями раствора [⁶].

Для лучшего согласия с данными опыта при расчете энтропийных характеристик параметр ω_{12} рассматривают как изменение свободной (а не потенциальной) энергии при квазихимической реакции. С целью учета изменения энтропии вводят второй параметр, $\partial \omega_{12}/\partial T$, полагая величину ω_{12} зависимой от температуры. Оба параметра, ω_{12} и $\omega_{12}/\partial T$, являются эмпирическими. Их значения определяются подгонкой так, чтобы получить хорошее согласие с опытными значениями функций смешения.

В отличие от Е. А. Гуггенгейма Дж. А. Баркер отвел молекуле *i* в соответствии с ее объемом не одно, а *r_i* мест в квазихимической решетке. Все места решетки предполагаются занятыми, а ее параметры не зависящими от состава раствора. Взаимодействие молекул осуществля-

1 ENSV TA Toimetised. K 4 1987

-1.0.6

ется через контактные участки, что позволяет учитывать различие в энергиях взаимодействия молекул при различной их ориентации друг относительно друга. Число контактных участков равно числу ближайших к молекуле *i* соседних узлов

$$q_i z = \sum_{s} Q_s^{(i)} = r_i (z - 2) + 2,$$
(4)

где $Q_s^{(i)}$ — число контактных участков типа *s* в молекуле *i*.

Соотношение между наиболее вероятными числами пар контактных участков разного типа в системе определяется квазихимическим уравнением

$$\frac{N_{st}^{2r}}{N_{ss}N_{tt}} = 4 \exp\left(-\frac{2\omega_{st}}{kT}\right),$$
(5)

где $N_{st} = \sum_{ij} N_{st}^{(ij)}$, $N_{st}^{(ij)}$ — число пар между контактными участками *s* молекулы *i* и контактными участками *t* молекулы *j*,

$$\omega_{st} = u_{st} - \frac{1}{2} \left(u_{ss} - u_{tt} \right)$$

— энергия взаимообмена, ust — энергия взаимодействия s—t.

Из энергий взаимодействия пар контактных участков складывается потенциальная энергия межмолекулярных взаимодействий (U). Величины $N_{st}^{(ij)}$ связаны с максимальным членом * конфигурационной статистической суммы раствора

$$Z_{\text{кон}\phi} \simeq \exp\left[-\frac{U}{kT}\right] = G^c \exp\left[-\frac{\sum_{s,t} N_{st} u_{st}}{kT}\right], \quad (6)$$

в которой число конфигураций (G^c) выражается с помощью формулы Гуггенгейма из теории растворов молекул разного размера [⁶].

Связь Z конф со свободной энергией смешения

$$\Delta F = -kT \ln Z_{\text{кон}\phi} \tag{7}$$

позволяет получить формулы для избыточных термодинамических функций раствора.

Контактные участки, имеющие одинаковые энергетические характеристики взаимодействия с соседними молекулами, относят к одному типу. В этом проявляется сходство с групповым подходом, в котором каждая группа характеризуется своей комбинацией контактных участков, определяющей энергетические свойства группы и ее поверхность. Однако в отличие от группового подхода контактные участки молекул разных компонентов в теории Баркера всегда относят к разным типам.

В квазихимических групповых моделях молекулы рассматриваются как совокупность не контактных участков, а групп в целом. Представление о квазихимической решетке подменяется представлением о некотором среднем окружении каждой группы, которое находят в квазихимическом приближении с учетом взаимодействия групп и их поверхностей. Величины r_i и q_i характеризуют здесь общий объем и поверхность молекулы *i* соответственно, которые складываются из объемов и поверхностей групп, определяемых из таблиц Бонди [7]. *z* становится характеристикой ориентационной упорядоченности раствора ($z \rightarrow \infty$ означает отсутствие таковой). Всем системам, молекулы которых вклю-

^{*} Предполагается, что наиболее вероятные значения чисел пар контактных участков ($N^{(ij)}_{st}$), отвечающие максимальному члену статистической суммы, подчиняются квазихимическому уравнению (5).

чают группы s и t, приписывают одинаковый параметр ω_{st} , определяемый по экспериментальным термодинамическим данным для систем, включающих эти группы. Предполагается аддитивность вкладов последних на уровне энергий (свободных энергий) их взаимодействия.

В формулы для расчета избыточных термодинамических функций в групповых квазихимических моделях, практически совпадающие с формулами модели Баркера, вводятся некоторые новые переменные. В рассматриваемом здесь групповом методе (методе Кехиаяна) к числу таких переменных относится поверхностная доля группы s в молекуле *i* и в растворе

$$\alpha_{s}^{(i)} = q_{s}^{(i)}/q_{i} \quad H \quad \alpha_{s} = \sum_{i} q_{s}^{(i)} x_{i} / \sum_{j} q_{j} x_{j} = \sum_{i} \alpha_{s}^{(i)} \theta_{i}, \tag{8}$$

где $q_s^{(i)}$ — поверхность группы *s* в молекуле *i*, $\theta_i = q_i x_i / \sum_j q_j x_j$ —

поверхностная доля компонента і в растворе.

Расчету избыточных термодинамических функций предшествует определение наиболее вероятных чисел пар групп (N_{st}) , устанавливаемых с помощью соотношений

$$N_{st} = Nz \sum_{i} x_{i} q_{i} X_{s} X_{t} \eta_{st}, \quad s \neq t,$$

$$N_{ss} = \frac{Nz}{2} \sum_{i} q_{i} x_{i} (X_{s})^{2},$$
(9)

где N — общее число молекул в системе, $\eta_{st} = \exp(-\omega_{st}/zkT)$. Величины X_s , X_t получают путем решения системы уравнений

$$X_s \sum_t X_t \eta_{st} = \alpha_s^{**}, \quad s = 1, 2, \dots, \sigma,$$
 (10)

где σ — число типов групп в системе.

Выражение для избыточного химического потенциала (μ_i^E) и коэффициента активности (γ_i) компонента *i* вводится с учетом связей (6), (7) и известных соотношений в пересчете на 1 моль

$$\left(\frac{\partial\Delta F}{\partial N_i}\right)_{T, N_{j\neq i}} = \Delta\mu_i, \quad \Delta\mu_i = RT \ln x_i \gamma_i, \quad \frac{\mu_i^E}{RT} = \ln \gamma_i,$$

где N_i — число молекул компонента *i*.

1*

Избыточный химический потенциал представляют в виде суммы двух слагаемых

$$\frac{\mu_i^E}{RT} = \frac{\mu_i^E_{KOMG}}{RT} + \frac{\mu_i^E_{B3}}{RT}.$$
(11)

Для расчета комбинаторного вклада, $\frac{\mu_{i \ kom \delta}^{E}}{RT}$, который определяется формой и размерами молекул, в настоящей работе была использована формула Гуггенгейма—Ставермана, приведенная в [9]. Составляющая избыточного химического потенциала, обусловленная различиями в

энергиях межгрупповых взаимодействий,
$$\frac{\mu_{i B3}^{L}}{RT}$$
, определена через

** Мы пользовались в расчетах модифицированной формой этого уравнения [8]: $X'_{s} \sum_{t} \alpha_{t} X'_{t} \eta_{st} = 1, X_{t} = \alpha_{t} X'_{t}, X_{s} = \alpha_{s} X'_{s}.$

$$\frac{\mu_{i_{B3}}^{\vec{E}}}{RT} = zq_i \sum_{s} \alpha_s^{(i)} \ln \frac{X_s \alpha_s^{(i)}}{X_s^{(i)} \alpha_s}, \qquad (12)$$

где $X_s^{(i)}$ — решение системы уравнений (10) для компонента i ($x_i = 1$). Эту составляющую можно выразить через групповые коэффициенты активности в растворе, Γ_s , и в чистом компоненте i, $\Gamma_s^{(i)}$, и придать ей форму, предложенную для групповых моделей [¹⁰]

$$\frac{\mu_{i_{B3}}^{E}}{RT} = \sum_{s} \nu_{s}^{(i)} (\ln \Gamma_{s} - \ln \Gamma_{s}^{(i)}), \qquad (13)$$

где $\Gamma_s = zq_s \ln(X_s/\alpha_s)$, $\Gamma_s^{(i)} = zq_s \ln(X_s^{(i)}/\alpha_s^{(i)})$, с учетом того, что $v_s^{(i)}q_s = a^{(i)}q_i$, $v^{(i)}$ — число групп типа *s*.

Выражение для избыточной энтальпии смешения

$$H^{E} = \frac{N}{2} \sum_{i} q_{i} x_{i} \sum_{s, t} \left(X_{s} X_{t} - \sum_{i} \Theta_{i} X_{s}^{(i)} X_{t}^{(i)} \right) \eta_{st} h_{st}, \tag{14}$$

где $h_{st} = \partial (\omega_{st}/T) / \partial (1/T)$ — мольная энтальпия взаимообмена, вытекает с учетом выражений (11) — (13) из следующих известных соотношений

$$H^{E} = \sum_{i} x_{i} H^{E}_{i},$$
$$H^{E}_{i} = \frac{\partial \ln \gamma_{i}}{\partial (1/T)} = \frac{\partial \ln \gamma_{i B3}}{\partial (1/T)} =$$

$$=\sum_{s} \mathbf{v}_{s}^{(i)} R\left(\frac{\partial \ln \Gamma_{s}}{\partial (1/T)} - \frac{\partial \ln \Gamma_{s}^{(i)}}{\partial (1/T)}\right) = \sum_{s} \mathbf{v}_{s}^{(i)} (H_{s} - H_{s}^{(i)}); \quad (15)$$

где H_s и $H_s^{(i)}$ — парциальные «мольные» избыточные энтальпии смешения группы *s* в растворе и компоненте *i* соответственно.

Температурная зависимость параметра ω_{st} в настоящей работе была выражена через

$$\frac{\omega_{st}(T)}{RT} = \frac{\omega_{st}(T_0)}{RT_0} + \frac{h_{st}(T_0)}{RT_0} \left(\frac{T_0}{T} - 1\right) + \frac{c_{p_{st}}}{R} \left(\ln\frac{T_0}{T} - \frac{T_0}{T} + 1\right),$$
(16)

где $c_{p_{st}}$ — теплоемкость взаимообмена, вычисляемая по формуле

$$c_{p_{st}} = \frac{h_{st}(T) - h_{st}(T_0)}{T - T_0}.$$
 (17)

В выражения для избыточных термодинамических функций (11) и (14) входят энергии и энтальпии взаимообмена (ω_{st} и h_{st}), характеристики объема и поверхности молекул (r_i и q_i), координационное число (z) и наиболее вероятные числа пар (N_{st}) для раствора и чистых компонентов. Основная задача при расчете по рассматриваемому варианту квазихимической групповой модели заключается в определении энергетических параметров групп и решении системы уравнений (10). При расчете парожидкостного равновесия и энтальпий смешения в системах, образованных изомерами *н*-алкенов с *н*-алканами и спиртами, координационное число, z, было принято равным 10, как и при расчете по групповому методу УНИФАК [⁹]. При расчетах исследуемые системы алкен—алкан и алкен—спирт рассматривались как смеси групп (табл. 1), причем группы СН₃ и СН₂, а также СН₂=СН и СН=СН считались равноценными с точки зрения энергетики взаимодействия.

Значения поверхностей (q_s) и объемов (r_s) групп, выраженные в единицах стандартного сегмента ($A^{c_T} = 3,13 \times 10^8 z$, $V_{c_T} = 2,366 (z-1)$ [¹¹]), определены для z = 10 (табл. 1).

Параметры групп	Группы					
	CH ₃	CH ₂	CH ₂ =CH	CH=CH	OH	
qs	0,6773	0,4313	0,9393	0,6901	0,4664	
q _s	0,6773	0,4313 0.5406	0,9393 1.0785	0,6901 0.8952		

Поверхностные и объемные параметры групп

Как и в случае систем алкан—спирт [⁸], на поверхности группы ОН выделялись два контактных участка, Н и О, для которых было принято $zq_{\rm H}=1$ и $zq_{\rm O}=zq_{\rm OH}-1$.

В качестве целевой функции при расчете энергетических параметров групп была использована функция

$$f = \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} \sum_{i=1}^{2} |\ln \gamma_{ikj \text{ pacy}} - \ln \gamma_{ikj \text{ эксп}}| + \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} \frac{|H_{jk \text{ pacy}}^{E} - H_{jk \text{ эксп}}^{E}|}{H_{jk \text{ эксп}}^{E}}, \qquad (18)$$

где γ_{ikj} — коэффициент активности компонента *i* для *j*-го состава *k*-й системы, H^E_{jk} — энтальпия смешения *j*-го состава *k*-й системы, 2 — число компонентов, *m* — число систем, n_k — общее число исследованных составов *k*-й системы.

В качестве исходных данных служили коэффициенты активности и энтальпии смешения компонентов ряда бинарных систем, перечисленных ниже (табл. 2).

Таблица 2

Таблица 1

Исходные данные для расчета групповых энергетических параметров

4) HIM STON ACHAMETISM, HEAL	Условия исследования			
Система	Yi	HE		
1-Гексен— <i>н</i> -гексан 1-Гептен— <i>н</i> -гептан 1-Октен— <i>н</i> -октан	333,15 К [¹²] 328,15 К [¹⁴] 1013,2 гПа [¹⁵]	298,15 K [¹³] 298,15 K [¹⁴] 298,15 K 308,15 K 318,15 K		
<i>транс</i> -2-Октен—1-бутанол	1013,2 rПa 799,9 rПa 266,6 rПa			
1-Октен—1-пропанол 1-Октен—1-бутанол 1-Нонен—1-бутанод		298,15 K 313,15 K 298,15 K 313,15 K 298,15 K 313,15 K		

В системах алкен-спирт параметры энергии взаимообмена введены для следующих пар групп: Шосна, с=с, шо, н, шосна, о= шосна, н, шос=с, о= = ω_{C=C. H}, для них же введены энтальпии теплоемкости взаимообмена. Значения энергетических параметров для групп CH2 и Н или О, О и Н [8] пересчитаны на новую базовую температуру (Т₀=377,15 К). Для пар, включающих группы с двойной связью, энергетические параметры определены впервые. При определении энергии взаимообмена групп в качестве исходных использованы только данные о коэффициентах активности компонентов в системах 1-гексен-и-гексан и 1-гептен-и-гептан (для групп CH2 и C=C) и транс-2-октен-1-бутанол при 799,9 гПа (для групп О, С=С или Н, С=С).

Таблица 3

Группы	$\frac{\omega_{st}(T_0)}{RT_0}$	$\frac{h_{st}(T_0)}{RT_0}$	$\frac{c_{p_{st}}}{R}$	<i>Т</i> _о , Қ
$CH_2, C=C$	0,01155	0,02414	0,03668	328,15
	0,00875	0,02357		377,15
O, CH ₂ (H, CH ₂)	0,3218	0,6300	2,1194	377,15
O, C = C(H, C = C)	0,2386	0,5402	-1,1664	377,15
O, H	-2,9706	-4,6106	-21,079	377,15

Приведенные энергетические параметры групп

Расчет парожидкостного равновесия и энтальпий смешения с применением групповых энергетических параметров (табл. 3) дал близкие к экспериментальным результаты для систем, образованных неполярными и малополярными компонентами (табл. 4 и 5).

Результаты расчета коэффициентов активности компонентов в системах алкен-спирт сравнимы по точности с результатами расчета по методу УНИФАК. Значительное расхождение между экспериментальными и расчетными данными получено для энтальпий смешения в этих системах (табл. 4). При этом асимметрия, присущая кривым $H^E = f(x_i)$ согласно экспериментальным данным [17], уменьшается в расчетных кривых с понижением температуры (рисунок), что также вносит свой вклад в расхождение между расчетом и экспериментом. Причина кроется, видимо, в ошибке определения температурного изменения параметра wst по формуле (16), увели-

Концентрационная зависимость молярной энтальпии смешения НЕ в системе 1-октен(1)-1-бутанол(2). Корреляция по уравнению Редлиха-Кистера при температуре 298,15 К (1) и расчет по уравнению (14) при температурах 298,15 (2), 353,15 (3) и 393,15 K (4). O экспериментальные данные.

246

Оценка надежности корреляции и предсказания с помощью квазихимической групповой модели коэффициентов активности и энтальпий смешения компонентов в бинарных системах

REAKUSAS	γ1		THE ROWINS	γ2		<i>НЕ</i> , Дж/моль		
P (T)	<i>x</i> ₁	эксп.	расч.	эксп.	расч.	эксп.	расч.	
1-октен(1)—и-октан(2)								
1013,2 гПа	0,105 0,300 0,496 0,701 0,900	1,010 1,007 1,005 1,003 1,002	1,014 1,009 1,005 1,002 1,000	1,002 1,002 1,004 1,007 1,012	1,000 1,002 1,004 1,009 1,015	26	27	
318,15 K	$\begin{array}{c} 0,136\\ 0,251\\ 0,415\\ 0,444\\ 0,498\\ 0,509\\ 0,531\\ 0,586\\ 0,769\\ 0,885\end{array}$	$1,031 \\ 1,022 \\ 1,013 \\ 1,012 \\ 1,009 \\ 1,009 \\ 1,008 \\ 1,006 \\ 1,002 \\ 1,000$	1,022 1,016 1,010 1,009 1,008 1,007 1,006 1,005 1,002 1,000	$1,001 \\ 1,003 \\ 1,008 \\ 1,009 \\ 1,011 \\ 1,011 \\ 1,012 \\ 1,014 \\ 1,024 \\ 1,030$	1,001 1,002 1,005 1,006 1,007 1,007 1,007 1,008 1,010 1,017 1,023	$19,7 \\ 31,6 \\ 39,2 \\ 42,0 \\ 40,7 \\ 42,1 \\ 40,5 \\ 40,5 \\ 30,1 \\ 17,3 \\ $	$19,3 \\ 31,0 \\ 40,2 \\ 40,9 \\ 41,5 \\ 41,5 \\ 41,4 \\ 40,4 \\ 29,8 \\ 17,1 \\ 10000000000000000000000000000000000$	
1-октен(1)—1-бутанол(2)								
298,15 K	0,115	3,277 2 403	3,036 3,454* 2 242	1,016	1,016 1,018* 1,096	200 472	282 541	
	0,447	1,829	2,434* 1,718 1,802*	1,281	1,109* 1,277 1,317*	661	660	
	0,487	1,725	1,624	1,349	1,343	689	669	
	0,671	1,352	1,289 1,301*	1,897	1,859 2,007*	775	614	
	0,690	1,321	1,262	1,992	1,945	744	599	
	0,752	1,229	1,182	2,400	2,307 2,547*	715	539	

* Расчет по методу УНИФАК.

Таблица 5

Предсказание давления насыщенного пара (P) в тройной системе 1-гептен(1)—н-гептан(2)—н-октан(3) при температуре 328,15 К с помощью квазихимической групповой модели

Состав раствора [18]			Р, гПа		
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	эксп.	расч.	
0,246	0,182	0,572	161	159	
0,422	0,385	0,193	238	223	
0,555	0,241	0,204	236	227	
0,206	0,569	0,225	211	208	
0,314	0.362	0.324	203	198	
0,200	0.200	0.600	159	152	
0.400	0.100	0.500	182	176	
0.300	0.300	0.400	193	186	
0,100	0,600	0,300	196	192	

чивающейся с ростом температурного интервала***. В подтверждение этого предположения можно сослаться на хорошую воспроизводимость кривых $H^{E} = f(x_{i})$ при более близкой к базовой температуре в системе 1-октен-1-бутанол и в системах алкан-спирт [19], где температурный интервал пересчета параметров *ωst* составил всего 10 градусов. Хорошая аппроксимация концентрационной зависимости энтальпий смешения в спирто-углеводородных системах достигнута благодаря выделению контактных участков в гидроксильной группе спирта [8], что позволяет более точно, чем в описываемой групповой модели, учитывать ориентационные эффекты [20].

Полученные результаты подтверждают необходимость в более систематическом исследовании квазихимических групповых моделей. Они теоретически более последовательны, чем эмпирические групповые модели, например, модель УНИФАК, и их дальнейшее развитие открывает возможность еще более широкого охвата термодинамических свойств смесей. Полученные групповые параметры могут быть использованы для предсказания термодинамических свойств многочисленных систем, содержащих те же группы, что и смеси, исследованные в настоящей работе.

*** При расчете НЕ для 298,15 К температурный интервал пересчета параметра ω O, C=C =ω H, C=C равен 79 градусам.

ЛИТЕРАТУРА

- 1. Kehiaian, H. V. Thermodynamik flüssiger Mischungen von Kohlenwasserstoffen mit Substanzen. - Ber. Bunsenges. phys. Chem., 1977, 81, N 10, verwandten 908 - 921.
- 2. Kehiaian, H. V., Grolier, J.-P. E., Benson, G. C. Thermodynamics of organic mixtures. A generalized quasichemical theory in terms of group surface interactions. -- J. Chem. Phys., 1978, 75, N 11-12, 1031-1048.
- Guggenheim, E. A. Mixtures. Oxford, 1952.
 Barker, J. A. Cooperative orientation effects in solutions. J. Chem. Phys., 1952, 20, N 10, 1526—1530.
- Barker, J. A., Smith, F. Statistical thermodynamics of associated solutions. J. Chem. Phys., 1954, 22, N 3, 375—380.
 Смирнова Н. А. Методы статистической термодинамики в физической химии. М.,
- 7. Bondi, A. Physical Properties of Molecular Crystals, Liquids and Glasses. New York, 1968.
- 8. Смирнова Н. А., Пиотровская Е. М. Расчеты термодинамических свойств растворов на основании групповой квазихимической мсдели. (Описание модели и применение ее к системам алканол—алкан.) — Ж. прикл. хим., 1984, 57, № 8, 1701-1706.
- 9. Кудрявцева Л., Куус М., Пиотровская Е., Кирсс Х. Расчет термодинамических
- Кусрявцева Л., Куус М., Настровская Е., Карсс А. Расчет термодинамических свойств систем, содержащих алкены, с помощью групповых моделей раствора. 1. Модель УНИФАК. Изв. АН ЭССР. Хим., 1985, 34, № 3, 186—195.
 Wilson, G. M., Deal, C. H. Activity coefficient and molecular structure. Ind. Eng. Chem. Fundam., 1962, 1, N 1, 20—23.
 Vera, J. H., Sayegh, S. G., Ratcliff, G. A. A quasi-lattice local composition model for the excess Gibbs free energy of liquid mixtures. Fluid Phase Equilibria, 1077 I. N.A. 112, 125. 1977, 1, N 4, 113-135.
- 12. Hanson, D. O., van Winkle, M. Alteration of the relative volatility of n-hexane -1-hexene by oxygenated and chlorinated solvents. - J. Chem. Eng. Data, 1967,
- 1-hexene by oxygenated and chlorinated solvents. J. Chem. Eng. Data, 1307, 12, 319—325.
 Woycicki, W. Excess enthalpies of binary mixtures containing unsaturated aliphatic hydrocarbons. 1. n-Alkene + n-alkane. J. Chem. Thermodyn., 1975, 7, 77—81.
 Kudryavtseva, L., Kuus, M., Viit, H., Eisen, O. 1-Heptene+heptane: liquid-vapor equilibrium, excess Gibbs energy and excess enthalpy. Intern. Data Series, Ser. A. Selected Data on Mixtures, 1981, 1980, N 1, 13—16.
 Куус М., Тооме М., Кудрявцева Л., Эйзен О. Термодинамические свойства смесей н-октана с изомерами н-октена. 2. Равновесие жидкость—пар. Изв. АН ЭССР. Хим., 1980, 29, № 1, 32—37.

- Kuus, M., Kudryavtseva, L. Excess enthalpies of isomeric normal octenes + normal octane. — Intern. Data Series, Ser. A. Selected Data on Mixtures, 1981, 1980, N 2, 118—124.
- Кудрявцева Л., Куус М., Хярсинг Н. Энтальпии смешения и сольватации в системах алифатический углеводород—спирт. — Изв. АН ЭССР. Хим., 1987, 36, № 3, 191—199.
- Кудрявцева Л., Кирсс Х., Эйзен О. Расчет и исследование равновесия жидкость—пар в системах гептен-1—гептан—октан и бензол—тиофен—гептан. — Изв. АН ЭССР. Хим., Геол., 1972, 21, № 1, 19—23.
 Смирнова Н. А., Пиотровская Е. М., Викторов А. И. Фазовые равновесия и энталь-
- Смирнова Н. А., Пиотровская Е. М., Викторов А. И. Фазовые равновесия и энтальпии смешения в системах, содержащих алканы, перфторалканы, алканолы. — Ж. прикл. хим., 1985, 58, № 6, 1261—1265.
- Смирнова Н. А. Групповые модели раствора. В кн.: Химия и термодинамика растворов, вып. 5. Л., 1982, 87—127.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 10/II 1987

L. KUDRJAVTSEVA, M. KUUS, E. PIOTROVSKAJA, Helle KIRSS

ALKEENE SISALDAVATE SEGUDE TERMODÜNAAMILISTE OMADUSTE ARVUTAMINE LAHUSTE GRUPIMUDELITE ABIL

2. Kvaasikeemiline grupimudel

On esitatud kvaasikeemilise grupimudeli võrevariandi lühike kirjeldus ja grupipaaride vastastikmõju parameetrid. Vedeliku ja auru tasakaalu (VAT) ja segunemissoojuste (H^E) arvutused samade parameetrite kaudu on tehtud 1-alkeene, *n*-alkaane ja 1-alkanoole sisal-davate süsteemide jaoks. Süsivesiniksüsteemide korral saadi hea kokkulangevus mõõtmistulemustega. Süsteemide 1-alkeen—1-alkanool VAT-i ennustamise täpsus on võrreldav UNIFAC-i mudeli abil saadud tulemustega. H^E sõltuvus kontsentratsioonist on viimati nimetatud süsteemide puhul hästi kirjeldatav temperatuuridel, mis palju ei erine baastemperatuurist (T_0). Madalamatel temperatuuridel eksperimentaalsete ja arvutatud sümeetria tõttu.

L. KUDRJAWZEWA, M. KUUS, E. PIOTROWSKAJA, Helle KIRSS

DIE BERECHNUNG VON THERMODYNAMISCHEN EIGENSCHAFTEN DER ALKENE ENTHALTENDEN SYSTEME MIT GRUPPENBEITRAGSMODELLEN

2. Das quasichemische Gruppenbeitragsmodell

Es werden die Gittervariante des quasichemischen Gruppenlösungsmodells kurz dargelegt und die Gruppenwechselwirkungsparameter angeführt. Die simultane Berechnung von Dampf—Flüssigkeit-Gleichgewichten (DFG) und Mischungsenthalpien (H^E) wird am Beispiel der 1-Alkene, *n*-Alkane und 1-Alkanole enthaltenden Systeme durchgeführt. Es zeigte sich, daß die Kohlenwasserstoffsysteme eine gute Übereinstimmung zwischen Meßwerten und den vorausberechneten Resultaten aufweisen. Die Vorhersage der DFG in dem 1-Alken—1-Alkanol-System kommt an die Genauigkeit der mit UNIFAC erreichten Ergebnisse heran. Auch die Konzentrationsabhängigkeit von H^E der letztgenannten Systeme läßt sich mit großer Genauigkeit wiedergeben bei den Temperaturen, die sich von der Basistemperatur (T_0) nicht viel unterscheiden. Bei den tieferen Temperaturen jedoch steigen die Abweichungen zwischen experimentellen und berechneten H^E -Werten hauptsächlich wegen des symmetrischen Verlaufes der berechneten H^E -Kurven.