EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. KEEMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1984, 33, 4

УДК 678.632'523'21: 543.422.23

Хелле ЛИППМАА, Т. ВЯЛИМЯЭ, П. КРИСТЬЯНСОН

ГПХ/ЯМР ¹³С АНАЛИЗ ФЕНОЛРЕЗОРЦИНФОРМАЛЬДЕГИДНЫХ СМОЛ

(Представил О. Эйзен)

Резорцинформальдегидные смолы являются важным компонентом в производстве деревянных конструкций. Однако из-за высокой стоимо сти резорцина перешли к созданию более дешевых, но не уступающих ему по качеству сополиконденсационных фенолрезорцинформальдегидных смол путем синтеза оксиметилфенолов (фенолоспиртов) в первой стадии процесса и конденсации их с двухатомным фенолом во второй. Своеобразие такого синтеза состоит в том, что двухатомный фенол во второй стадии поликонденсации реагирует не со свободным формальдегидом, а с оксиметильными группами фенолоспиртов, реакционная способность которых определяет скорость поликонденсации двухатомного фенола и природу образующихся олигомеров. Спектроскопия ЯМР ¹³С вместе с хроматографией представляет единственную возможность анализировать такие сложные смеси и определять основные структурные элементы сополиконденсатов.

В данной работе сопоставляются смолы, синтезированные поликонденсацией оксиметилфенолов с резорцином и с 5-метилрезорцином [¹] Последний выбран как основной компонент сланцевых двухатомных фенолов. Для сравнения представлены также результаты анализа образца производственной фенолрезорцинформальдегидной смолы ФРФ-50.

Экспериментальная часть

Оксиметилфенолы синтезировали из фенола и 37% формалина (из параформа) в молярном соотношении 1:1,5 в присутствии 0,14 моля гидроокиси натрия при 60°С в течение 6 ч и затем подвергали их конденсации с 1,2 молями соответствующего двухатомного фенола при 100—102° в течение 2 ч.

Хроматографическое фракционирование смол на полидекстрановом геле «Сефадекс LH-20» проводили по методике [²]. Спектры ЯМР ¹³С суммарных смол и модельных соединений снимали при комнатной температуре в 5—10%-ных растворах метанола при 125,76 МГц (магн. поле 11,7 Т) на спектрометре АМ-500 («Вгикег», ФРГ) со сверхпроводящим соленоидом с длительным накоплением сигнала (4000—8000 по 5 с). Спектры ЯМР ¹³С фракций снимали при комнатной температуре в 2—10%-ных растворах пиридина при 90,55 МГц (магн. поле 8,5 Т) на спектрометре СХР-360 («Вгикег», ФРГ) со сверхпроводящим соленоидом с накоплением сигнала (4000—15000 по 5 с). Химические сдвиги углерода-13 (¹³С) измерены от внутреннего тетраметилсилана.

При интерпретации спектров использовали результаты изучения формальдегидных олигомеров двухатомных фенолов [^{1, 3, 4}] и спектро-

Таблица 1

Химические сдвиги ун	глерода-13 в	метиленовых	группах
----------------------	--------------	-------------	---------

Ф-СН2-Ф	P—CH ₂ —P	P-CH ₂ -Φ	$MP-CH_2-\Phi [1]$		
<i>n,n'</i> -40,6 <i>o,n'</i> -35,9 <i>o,o'</i> -31,2	4,4'-29,6—30,9 2,4'-23,1—23,9 2,2'-17—18	4, <i>n</i> '-35,1—35,3 4, <i>o</i> '-30,2—30,5 2, <i>n</i> '-28,6—30,4 2, <i>o</i> '-23—25,7	$\begin{array}{c} 4,n'-31,7\\ 4,o'-27,0\\ 2,n'-29,8\\ 2,o'-25,1\end{array}$		

Обозначения: Ф — фенол, Р — резорцин, МР — 5-метилрезорцин. Обозначение *орто-пара* относится к одноатомному фенолу, а нумерация положений — к двухатомному.

скопические данные изучения поликонденсатов фенола [5, 6]. В соответствии с правилом аддитивности рассчитали химические сдвиги ¹³С в мостиковых метиленовых групнах (табл. 1) ожидаемых соолигомеров (инкременты из [1]). Дополнительно синтезировали некоторые эталонные вещества конденсацией о-оксиметилфенола (салигенина) [7] с резорцином [8] и 5-метилрезорцином. Для этого эквимолярные смеси реагентов нагревали при 98-100°. Протекание реакции определяли по исчезновению — CH2OH группы, применяя ИК-спектрометрию. Перекристаллизацией из воды получали 2,2',4'-триоксидифенилметан (1), 2,2',4'-триокси-6'-метилдифенилметан (2) как основные продукты и в следовых количествах — 2,2',6'-триокси-4'-метилдифенилметан (3); из маточного раствора дополнительно выделяли соответствующие тримеры (4), (5) с двукратно замещенным кольцом двухатомного фенола в середине молекулы (табл. 2). Наряду с сополиконденсатами образовывались также гомоолигомеры из оксиметилфенола, характеризуемые резонансами ¹³С в 0,0'- и 0,n'-метиленовых группах при 31 и 35 м. д. соответственно. Те же гомоолигомеры образуются вместе с 2,2'-диоксидибензиловым эфиром (6) при конденсации в расплаве салигенина при 98-100°. Образование при этом 3-оксиметил-4,2'диоксидифенилметана (7) и 3-оксиметил-2,2'-диоксидифенилметана (8) показывает, что в расплаве конденсация идет не только по оксиметильным группам, но и по свободным о- и п-положениям салигенина. Аналогичные результаты получены в присутствии гидроокиси натрия [9].

Результаты и обсуждение

Оксиметилфенолы. Из-за малой разницы в реакционных способностях фенола в *о*- и *п*-положениях соотношение *о/п*-замещения в продуктах реакции оксиметилирования становится чувствительным к количеству и природе катализатора и растворителя. Известно, что малые количества щелочи, прибавки окисей или гидроокисей щелочноземельных металлов способствуют *о*-ориентации. Синтез через алкилмагниевые соли в растворе бензола [¹⁰] и некаталитическая конденсация в среде сухого ксилола, азеотропически связывающего воду [¹¹], обеспечивают полную *о*-ориентацию. Высокая степень *о*-ориентации ускоряет отверждение смолы при склеивании, так как *n*-CH₂OH группы конденсируются быстрее *о*-CH₂OH групп, которые из-за стабилизирующей внутримолекулярной водородной связи сохраняются в смеси длительное время.

В примененных условиях получается смесь оксиметилфенолов, в которой распределение формальдегида (табл. 3) указывает на его преимущественное о-присоединение, а также на более высокую скорость

Таблица 2

Структура и ЯМР ¹³С характеристика синтезированных соединений (5—10%-ные растворы в СН₃OH + CD₃OD)

Соединение		оде	Химические сдвиги ¹³ С							
		Kon	C ₁	C ₂	C ₃	C4	C ₅	C ₆	CH ₂	CH ₃
in the	OH CH2OH	*	156,2 156,5	128,4 129,2	129,3 128,9	120,5 120,1	129,3 128,9	116,4 116,1	61,4 61,3	
(1)	CH2 CH2 HO OH	1 2	129,3 120,0	155,4 157,5	116,2 103,8	128,0 156,2	121,0 108,1	131,3 131,9	30,3	
(2)	$\begin{array}{c} 0H\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	1 2	128,5 117,9	155,9 156,9	115,9 101,4	127,5 156,9	120,5 110,1	130,1 -140,4	26,1	20,1
(3)		2	114,1	156,9	108,7	137,3	108,7	156,9	24,5	21,3
(4)		1 2	129,3 120,3	155,2 154,4	116,7 103,8	128,0 154,4	121,0 120,3	131,2 133,3	30,4	
(5)	$\begin{array}{c} 0H \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ HO \\ \\ HO \\ \\ OH \\ \end{array} \begin{array}{c} CH_2 \\ CH_2 $	1 2	128,7 118,6	155,8 154,9	115,8 101,4	127,5 154,9	120,7 118,6	130,3 139,6	26,6	— 16,1
(6)			125,3	156,8	116,1	130,0	120,5	130,5	69,6	
(7)	HOCH2 HOCH2 HO	1. 2	133,3 129,8	129,6 156,0	128,5 116,3	154,8 127,9	116,2 120,5	128,0 131,4	35.7	CH₂OH 61,1
(8)	$HOCH_{2} \xrightarrow{OH} CH_{2} \xrightarrow{OH} 2$	1 2	130,2 129,7	154,2 156,0	128,4 116,3	128,0 127,9	120,3 120,5	130,3 131,4	30,6	61,6

* В пиридине.

конденсации *n*-CH₂OH групп в соответствующие *n*,*n*'- и *o*,*n*'-CH₂— группы. Полное отсутствие *o*,*o*'-CH₂— групп объясняется высокой стабильностью *o*-CH₂OH групп. Результаты хроматографирования смеси оксиметилфенолов и их сополиконденсатов с резорцинами также отражают стабильность *o*-CH₂OH групп, которые в малом количестве сохраняются во всех олигомерных фракциях.

При +7° состав смеси оксиметилфенолов медленно изменяется: за счет прореагировавших *n*-CH₂OH групп увеличивается содержание

		~	
	- 5		
		-	
	-		
		~	
		_	
		_	
		-	

Характеристика сополиконденсатов

Количе- ство ФА в сооли- гомерах,		47	32	54		
Соотно- шение о/п-заме- щений фенола		1,46 1,17 0,83		1,47 1,12	1,48	
		4,0'-	31 39	18 26	34 2,0'-5 43 2,0'-7	
la		0,0'-	9 11	10	6 4	
льдегид	-CH2-	4,n'-	16 20	14 22	15	
форма		o,n'-	12	15 23	8	4
еление		- <i>'n</i> , <i>n</i>	12	13	13 16	10
аспред	HO2	-0	18	33	20	64
Ι	CH	-11	5	*	2	22
		*	- 01	- 2	- 2	1
Коли-	CMO-	%	74	63	69	[
Непрореаги- ровавшие фенолы, % Ф Р, МР		23	25	26	1	
		Φ	3	12	۵	=
Ката- лиза- тор		NaOH	о-ориен- тирую- щий [¹⁴]	NaOH	E	
Моляр- ное соотно- шение		1:1,2:1,5	1:1:1	1:1,2:1,5	1:1,5	
Смола		ренолрезор- (информаль- (егидная р-р-ФА	ренолрезор- (информаль- (егидная рРФ-50	ренол-5-метил- езорцинформ- гльдегидная р-МР-ФА	ренолформ- ильдегидная фенолоспирты)	

* Химический сдвиг n-CH2OH совпадает с резонансом этиленгликоля при 64,4 м.д., который в количестве 10-12% присутствует в смеси. 1 — на суммарную смолу, 2 — на олигомеры. . **

Рис. 1. Хроматограммы двух смол: ФРФ-50 (сплошная линия) и Ф-Р-ФА (пунктир). ФРФ-50=2 (1), 25 (2), 7,5 (3), 3 (4), 11,5 (5), 17 (6) и 17% (7); потери 17%. Ф-Р-ФА=3 (1'), 26 (2'), 9 (3'), 4,5 (4'), 11 (5'), 6 (6'), 20 (7') и 10% (8'): потери 10,5%. ДМФА — N,N-диметилформамид.

олигомеров с o, n'-CH₂— группами. Олигомеры с o, o'-метиленами и диоксидибензиловые эфиры не образуются в этих условиях, хотя эфиры легко появляются либо в процессе хроматографирования, либо в течение последующей вакуумной откачки элюента. Интересно отметить, что на присутствие в составе фенолформальдегидной смолы (1/1,5; гидроокись натрия) не только —CH₂OH, n,n'- и o,n'-CH₂— групп, но и диметиленэфирных указывалось в [¹²], но там спектры ЯМР ¹³С смолы снимали после дистилляции, а в ее ходе, по всей вероятности, и произошло образование эфиров.

Соотношение CH₂OH/—CH₂—=6 в полученной смеси указывает на низкую степень поликонденсации и на значительное количество мономерных оксиметилфенолов. Судя по интегральным интенсивностям сигналов гидроксилзамещенных углеродов, содержания одно-, дву- и трехкратно замещенных фенольных колец относятся как 8:5:1. Так, в количестве не более 7% могут присутствовать соединения с трехкратно замещенным фенольным кольцом: 3,5,3',5'-тетраоксиметил-4,4'диоксидифенилметан, возникающий, например, при автоконденсации 2,4,6-триоксиметилфенола, 3,3',5'-триоксиметил-2,4'-диоксидифенилметан и 3,5,3'-триоксиметил-2,4'-диоксидифенилметан, образующиеся из 2,6-диоксиметилфенола и 2,4-диоксиметилфенола соответственно [¹³].

Соотношение o/n=1,5 и 64% o-CH₂OH групп в оксиметилфенолах. предопределяют характер образующихся структур в стадии сополиконденсации их с двухатомным фенолом.

Сополиконденсаты. Общий характер хроматографирования и природа разделяющихся компонентов фенолрезорцинформальдегидных смол Ф-Р-ФА и ФРФ-50 (рис. 1) сходны с обнаруженными в случае сополиконденсата из 5-метилрезорцина [1]. Многофункциональность фенола

Рис. 2. Спектры ЯМР ¹³С изученных смол в области гидроксилзамещенных углеродов (растворитель CH₃OH+CD₃OD). Сбозначения сигналов: Рев, Фев — свободные резорции и фенол; Рк — концевой резорции; *n*-Ф — *n*-замещенный фенол.

обусловливает образование очень большого числа изомеров, адсорбционные способности которых зависят от типа замещения в ароматическом кольце. Поэтому наблюдаются отклонения от строгого распределения по молекулярным массам, и часть димерных олигомеров вытесняется из колонки раньше непрореагировавших свободных фенолов или вместе с ними. Хотя первые хроматографические фракции составляют малую часть всей смолы, содержащиеся в них вещества являются промежуточными компонентами, структура которых помогает оценить ход дальнейших реакций в процессе поликонденсации. Первая фракция содержит о- и п-оксиметилфенолы, п,п'-диоксидибензиловый эфир, а также в нее начинают вытесняться 4,0'- и 4,n'-содимеры (рис. 3) и соединения (7) и (8) (табл. 2). Эти соединения в следовых количествах присутствуют также во фракции резорцина, за которой идет обычная димерная фракция, состоящая в основном из 4,n'- и 4,о'-содимера и .4, n'-содимера с о-оксиметильной группой. Преобладание 4, п'-содимера в этой фракции, очевидно, обусловлено большей активностью 4,0'-содимера вступать в дальнейшие реакции конденсации. С увеличением молекулярной массы в следующих хроматографических фракциях растет и число возможных изомеров.

Высокая доля последней фракции и заметные потери за счет оставшихся в колонке более высокомолекулярных олигомеров указывают на весьма высокую молекулярную массу сополиконденсационной смолы.

В спектрах ЯМР ¹³С (рис. 2) смол Ф-Р-ФА, ФРФ-50 и фенол-5метилрезорцинформальдегидной (Ф-МР-ФА) типичное расположение сигналов гидроксилзамещенных углеродов (160—150 м. д.) дает вместе с участками спектров —СН₂ОН и —СН₂— групп (65—60 и 40—30 м. д. соответственно) ценную информацию о распределении формальдегида в сополиконденсатах и о ряде других характерных параметров (табл. 3).

По интегральным интенсивностям сигналов гидроксилзамещенных углеродов = С—ОН в спектрах на рис. 2 рассчитали содержания непрореагировавших фенола (158,2 м.д.) и двухатомного фенола (159,5 м. д. Р и 159,11 м. д. МР). Химические сдвиги от 157,5 до 155,5 м. д. принадлежат однократно замещенным кольцам фенола и резорцина, сигналы 155 до 150 м. д. соответствуют различно замещенным кольцам резорцина, 5-метилрезорцина и фенола в середине олигомеров и концевому фенолу с *о*-СН₂ОН заместителем. Интенсивные пики мономеров и преобладающих концевых групп хорошо распознаваемы в сложном спектре тесно расположенных и перекрывающихся сигналов = С—ОН колец многообразных фенольных олигомеров. Сложность спектра обусловлена чувствительностью химических сдвигов = С—ОН фенола не только к типу замещения и природе заместителя в наблюдаемом кольце, но и к типу замещения в соседнем кольце и изомерной конфигурации всего олигомера.

В спектрах ЯМР ¹³С хроматографических фракций *n*-замещенные фенольные кольца выделяются интенсивными и легче интерпретируемыми сигналами = С—OH, чем *o*-замещенные кольца, что может означать более низкую реакционную способность *o*-положений в *n*-замещенном кольце фенола. Бо́льшая активность *n*-положений в *o*-замещенных кольцах способствует образованию *o*,*n*-двузамещенных колец из однократно *o*-замещенного фенола. С другой стороны, сигнал = С—OH в *n*-замещенном феноле относительно независим от положения заместителей соседнего кольца. В то же время химический сдвиг однократно *o*-замещенного фенола очень чувствителен к типу замещения в соседнем кольце, отчего сигналы *o*-концевых групп дают пики, с трудом поддающиеся расшифровке в спектрах суммарных смол и в спектрах хроматографических фракций.

Среди всевозможных комбинаций серединных и концевых фенольных и резорциновых звеньев во всех фракциях, начиная с тримеров, не удалось обнаружить 2-замещенного кольца резорцина. Известно, что в основном из-за пространственных препятствий это положение резорцинового кольца наименее активно в реакциях электрофильного замещения [¹⁵]. При поликонденсации резорцина с оксиметилфенолами реакционная способность последних определяет прореагировавшую долю как двухатомного фенола, так и низкомолекулярных фенольных гомоолигомеров. В реакциях с формальдегидом резорцин проявляет высокую активность, но в данных условиях значительная часть резорцина идет на образование концевых групп в олигомерах. в результате чего создаются благоприятные предпосылки для быстрой реакции свободных 4-положений с формальдегидом в стадии отверждения смолы. Понятно, что заметные количества непрореагировавших 4-положений резорцина еще больше подавляют реакцию сополиконденсации в 2-положении кольца.

Примеры отнесенных структур из спектров ЯМР ¹³С представлены на рис. 3.

Сравнение трех сополиконденсатов смеси оксиметилфенолов с двухатомными фенолами, охарактеризованных спектрами ЯМР ¹³С на рис. 2 и результатами анализа этих спектров в табл. 3, показывает, что резорцин и 5-метилрезорцин в равных условиях образуют одинаковое количество продуктов соконденсации. Это еще раз доказывает, что сущность реакции сополиконденсации зависит не от активности двухатомного фенола к электрофильному замещению, а от скорости образования реагирующего промежуточного состояния из оксиметильных групп фенола. Направляющее влияние метильной группы способствует образованию малого количества соолигомера, включающего 2-замещенное кольцо 5-метилрезорцина. По остальным показателям смолы Ф-Р-ФА и Ф-МР-ФА весьма сходны.

Производственная смола ФРФ-50 содержит меньше исходного формальдегида, чем смолы Ф-Р-ФА и Ф-МР-ФА, что проявляется в

268

Рис. 3. Примеры соолигомеров, определенных из спектров ЯМР ¹³С хроматографических фракций (растворитель пиридин).

более низкой степени поликонденсации и в большем количестве непрореагировавшего фенола. По данным хроматографии, ФРФ-50 имеет больше низкомолекулярных компонентов, чем Ф-Р-ФА. ФРФ-50 создавалась как смола повышенной скорости отверждения с высоким содержанием о-замещенного фенола и 2-замещенного резорцина с применением о-ориентирующего катализатора [¹⁴]. Однако гидроокись натрия способствует образованию более благоприятного о/n-соотношения в замещенных фенольных кольцах. Олигомеров же с 2-замещенными резорциновыми кольцами практически не наблюдается. В смоле ФРФ-50 относительно меньше 4,0'-олигомеров, чем в смолах Ф-Р-ФА и Ф-МР-ФА (табл. 3).

Выводы

1. Методами спектроскопии ЯМР ¹³С и гельпроникающей хроматографии изучены структурные особенности сополиконденсационной фенолрезорцинформальдегидной смолы.

2. Сравнены сополиконденсаты фенолоспиртов с резорцином и 5-метилрезорцином.

3. Определяющим фактором при сополиконденсации является реак-

269

ционная способность оксиметильных групп фенолоспиртов, а не активность двухатомных фенолов к электрофильному замещению.

4. Изученные смолы близки по структуре. В лабораторных сополиконденсатах фенолоспиртов с резорцином и 5-метилрезорцином в соолигомеры связывается около 50% исходного формальдегида, а в производственной фенолрезорцинформальдегидной смоле — около 32%.

5. Особенностью изученных сополиконденсационных смол является достаточное количество свободных п-положений в замещенных фенольных кольцах (соотношение o/n > 1) и относительно высокое содержание 4-замещенных резорциновых концевых групп, выступающих активными реакционными центрами при отверждении этих смол.

ЛИТЕРАТУРА

- 1. Липпмаа Х. В., Сийлатс В. Х., Кристьянсон П. Г. ГПХ/ЯМР ¹³С анализ фенол-5-метилрезорцинформальдегидной смолы. Тр. Таллин. политехн. ин-та, 1981,
- № 513, 15—27. 2. Липпмаа Х. В., Кристьянсон П. Г., Пехк Т. И. Гелевая хроматография поликон-денсатов 5-метилрезорцина. Тр. Таллин. политехн. ин-та, 1978, № 459, 49-59.
- 3. Липпмаа Х. В., Оливсон А. И. Влияние различных катализаторов на химиче-скую структуру резорцинформальдегидной смолы. Тр. Таллин. политехн
- скую структуру резорцинформальдегидной смолы. Тр. Таллин. политехн ин-та, 1980, № 491, 45—53.
 4. Липлмаа Х. В. Сравнение состава и структуры резорциновых и 5-метилрезорциновых смол. Тр. Таллин. политехн. ин-та, 1982, № 534, 13—21.
 5.. Sojka, S. A., Wolje, R. A., Guenther, G. D. Formation of phenolic resins: mechanism and time dependence of the reaction of phenol and hexamethylenetetramine as studied by carbon-13 NMR and FT IR spectroscopy. Macromolecules, 1981, 14, N 5, 1539—1543.
 6. Sojka, S. A., Wolje, R. A., Dietz, E. A. Jr., Dannels, B. F. Positional isomers of bis (hydroxybenzyl) phenols and bis (hydroxyphenyl) methanes. Macromolecules, 1979, 12, N 4, 767—770.
- les, 1979, 12, N 4, 767—770.
 7. Shoji Seto, Hikaru Horiuchi. Simple method of direct synthesis of saligenin from phenol and formaldehyde. J. Chem. Soc. Jap., Ind. Chem. Sect., 1954, 57, 689-690.
- Sprung, M. M., Gladstone, M. T. A study of some condensations of o-methylolphe-nol. J. Amer. Chem. Soc., 1949, 71, N 8, 2907—2913.
 Yeddanapalli, L. M., Francis, D. J. Kinetics and mechanism of the alkali catalysed condensation of o- and p-methylol phenols by themselves and with phenol. Makromol. Chem., 1962, 55, N 1, 74—86.
 Dradi, E., Casiraghi, G., Sartori, G., Casnati, G. The design of a versatile synthesis of c. d. methylong bridged polynomedes. Makromol. Chem. 1978, 11 N 6.
- of o-o' methylene-bridged polyphenols. Makromol. Chem., 1978, 11, N 6, 1295-1302

- 1295—1302.
 Casiraghi, G., Casnati, G., Cornia, M., Sartori, G., Bigi, F. A convenient synthesis of alla-ortho novolac resins. Makromol. Chem., 1981, 182, N 11, 2973—2980.
 deBreet, A. J. J., Dankelman, W., Huysmans, W. G. B., deWit, J. ¹³C NMR analysis of formaldehyde resins. Angew. Makromol. Chem., 1977, 62, N 877, 7—33.
 Francis, D. J., Yeddanapalli, L. M. Kinetics and mechanism of the alkali-catalysed condensations of di- and tri-methylol phenols by themselves and with phenol. Makromol. Chem., 1969, 125, N 3070, 119—125.
 Chem., H. M. Wayko, YMM, HERCH, CHARGE, CHARGE, CHARGE, CONDARD, CHEM., ONE.
- 14. Силинг М. И. Физико-химические основы синтеза феноло-формальдегидных оли-
- гомеров. Докт. дис. М., 1978, 301—302. 15. March, J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure. New York, 1977.

Таллинский политехнический институт

Поступила в редакцию 3/V 1984

Институт химической и биологической физики Академии наук Эстонской ССР

Helle LIPPMAA, T. VÄLIMÄE, P. CHRISTJANSON

FENOOLRESORTSIINFORMALDEHÜÜDVAIKUDE ¹³ C TMR JA GEELIKROMATOGRAAFILINE ANALÜÜS

Kombineerides preparatiivset geelikromatograafiat ja ¹³ C TMR sepktroskoopiat, on analüüsitud fenoolalkoholidest ja kahealuselistest fenoolidest sünteesitud kopolükondensatsioonvaike. Ilmneb, et fenoolalkoholide koostis ja aktiivsus määravad resortsiiniga või 5-metüül-resortsiiniga moodustuvate kooligomeeride koostise ja tekkekiiruse. Ligi 50% formaldehüüdist on seotud kooligomeeridesse. Suhteliselt kõrge fenooli vabade *p*-asendite (asendussuhe *o*/*p*>1) olemasolu ja 4-asendatud resortsiini (lõppgrupid) sisaldus on käsitletavate koolükondensaatide kiire kõvenemise peamiseks eelduseks.

Helle LIPPMAA, T. VÄLIMÄE, P. CHRISTJANSON

¹³ C NMR/GPC ANALYSIS OF PHENOL-RESORCINOL-FORMALDEHYDE RESIN

High field ¹³ C NMR spectroscopy and gel permeation chromatography have been used to study structural characteristics of phenol-resorcinol-formaldehyde copolycondensates. It appears that the composition and reactivity of the intermediate hydroxymethylphenols determines the rates of formation and the composition of the copolycondensates with resorcinol or 5-methylresorcinol. Nearly 50% of the formaldehyde is bound in co-oligomers. A relatively high content of free *p*-positions of phenol (ratio o/p > 1) and 4-substituted resorcinol end-groups are the main cause of the favourable curing rates of these polycondensates.