ÉÉSTÍ NSV TEADUSTÉ AKADÉEMIA TOIMÉTISÉD. KÉÉMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1984, 33, 4

https://doi.org/10.3176/chem.1984.4.08

УДК 577.151.42+577.152.344

Я. РИЙКОЯ, Надежда ПАБЕРИТ, Марет ПАНК, А. ААВИКСААР

ПЕРВИЧНАЯ СУБСТРАТНАЯ СПЕЦИФИЧНОСТЬ «СУПЕРАКТИВИРОВАННЫХ» МЕТАЛЛОПРОТЕИНАЗ

Работами Б. Л. Вэлли с сотрудниками [1, 2] было показано, что обработкой нейтральных протеиназ из Bacillus thermoproteolyticus, Bacillus subtilis, Bacillus megaterium и Aeromonas proteolytica N-оксисукцинимидными эфирами ароматических ациламинокислот можно получить «суперактивные» формы, превосходящие по пептидазной активности нативные ферменты в десятки и даже в сотни раз. Степень активации зависит от природы модифицирующей ациламинокислоты и используемого субстрата. Доказано, что изменение активности термолизина из Bacillus thermoproteolyticus происходит в результате специфического ацилирования единственного остатка тирозина (Туг-110) в молекуле фермента [3]. Этот остаток, по-видимому, расположен вблизи субцентра S_1 для связывания боковой цепи аминокислоты в положении P_1 субстрата (номенклатура по [4]): эффект активации при ацилировании фермента наблюдался только для субстратов, содержащих Gly или Ala в положении P1; по отношению к субстратам с Phe в этом положении активность модифицированного фермента оказалась меньшей, чем у нативного [1, 2]. Учитывая, что при переходе от FA-Gly-Leu-Gly к FA-Phe-Leu-Gly (FA - 3-(2-фурил) акрилоил) скорость гидролиза субстрата под действием нативного термолизина увеличивается в 27,7 раза, а активация термолизина, модифицированного N-оксисукцинимидным эфиром N-ацетил-L-фенилаланина, относительно FA—Gly—Leu—Gly составляет 20 раз [1], можно думать, что для субстратов, содержащих в положении P₁ аминокислоту с небольшой боковой цепью, присоединенный к Туг-110 остаток ацетилфенилаланина (AcPhe) дополняет субстрат в его гидрофобном взаимодействии с субцентром S1, обеспечивая оптимальную каталитическую конформацию фермента. Если же в субстрате в положении Р1 находится фенилаланин, то между двумя группами возникает конкуренция за субцентр S_1 и взаимодействие субстрата с ферментом должно ухудшаться.

Поскольку специфический лиганд субцентра S'_1 , β -фенилпропионилфенилаланин, не ингибирует реакцию модифицирования термолизина N-оксисукцинимидными эфирами ациламинокислот, и константа его связывания с модифицированными термолизинами совпадает с K_I для нативного фермента [¹], можно думать, что модификация Туг-110 не должна менять специфичность относительно аминокислотного остатка субстрата в положении P'_1 . Имеющиеся в литературе данные по субстратной специфичности тирозин-модифицированных активированных металлопротеиназ [^{1, 2}], однако, не согласуются с этим предположенисм. Так, в случае FA—Gly—Ala—Gly AcPhe-термолизин увеличивает скорость гидролиза в 100 раз по сравнению с нативным ферментом, а в случае FA—Gly—Leu—Gly — лишь в 20 раз.

4 ENSV TA Toimetised. K 4 1984

Для количественной оценки роли гидрофобной полости субцентра S₁ в специфичности металлопротеиназ нами была использована серия хромогенных субстратов [^{5, 6}] с общей формулой FA—Gly—X—NH₂ (X см. в табл. 1). В настоящей работе на этой серии изучена первичная субстратная специфичность двух металлоэндопептидаз, активированных с помощью N-оксисукцинимидного эфира N-ацетил-L-фенилаланина — термолизина и новой нейтральной металлопротеиназы, выделенной в нашей лаборатории из Bacillus brevis 7882 [^{6, 7}].

Экспериментальная часть

Использовали трис фирмы «Reanal», перекристаллизованный из метанола, малеиновую кислоту марки «чда», NaOH, CaCl₂, CoCl₂ марки «хч». Синтез субстратов описан в [⁸]; N-оксисукцинимидный эфир N-ацетил-L-фенилаланина был синтезирован, как описано в [¹], данные элементного анализа C₁₅H₁₆N₂O₅: C 59,48, N 9,30, H 5,44 (теорет.: C 59,20, N 9,21, H 5,30); т. пл. 153—154 °C.

Использовали термолизин фирмы «Calbiochem-Behring» (США); нейтральная металлопротеиназа *Bacillus brevis* 7882 была выделена в нашей лаборатории [^{6, 7}]; запасные растворы ферментов готовили в буфере 0,05 М трис-HCl, pH 8;8, содержащем 5 мМ CaCl₂, и хранили при 4 °C.

Кинетику гидролиза субстратов измеряли на спектрофотометре «Varian Techtron 635» (Австралия) по уменьшению оптической плотности реакционной смеси при 322 нм, используя в расчетах Δε₃₂₂=2300. Константы скоростей псевдопервого порядка и бимолекулярные константы гидролиза определяли, как описано в [⁶].

Ферменты модифицировали N-оксисукцинимидным эфиром N-ацетил-L-фенилаланина согласно [¹] при концентрации реагента 5 мМ; модифицированный фермент выделяли гельфильтрацией на Sephadex G-25; размеры колонки 20×0,9 см.

Измерения для Co(II)-ферментов проводили, вводя Zn(II)-ферменты в растворы субстратов, содержащие 1 мМ CoCl₂. Как было показано ранее [⁹], ферментативная активность в этих условиях соответствует активности Co(II)-ферментов, полученных путем последовательного удаления цинка и введения кобальта в молекулу фермента.

В корреляциях использовали значения констант гидрофобности боковых цепей аминокислот л_R, приведенные в [⁶].

Результаты и их обсуждение

Бимолекулярные константы скорости гидролиза N-3-(2-фурил)акрилоил-глицил-X-амидов (FA—Gly—X—NH₂) под действием модифицированных термолизина и нейтральной металлопротеиназы *Bacillus* brevis 7882 (табл. 1) были проанализированы с помощью уравнения

$$\lg k_{\rm II} = \lg k_{\rm II}^0 + \varphi \pi_R. \tag{1}$$

Выяснилось, что их первичная субстратная специфичность относительно аминокислотного остатка в положении P'_1 в дипептидных субстратах серии FA—Gly—X—NH₂ при активации не меняется. Из параметров корреляций (табл. 2) видно, что величины реакционной константы φ , характеризующей чувствительность активного центра фермента к изменению гидрофобности заместителя R в данной реакционной серии, для нативных и AcPhe-ферментов статистически неотличимы

Ферментативный гидролиз амидов N-фурилакрилоилглицил-аминокислот

$$\begin{array}{c} & & & \\ & & &$$

Номер соединения	Варьнруемая аминокислота	R	$k_{\rm II} \cdot 10^{-2}, \ {\rm M}^{-1} {\rm c}^{-1}$						
			Термолизин			Металлопротеиназа <i>B. brevis</i>			
			натив- ный с Со (II)	AcPhe	•AcPhe • c Co(II) •	натив- ная с Со (II)	AcPhe	AcPhe c Co(II)	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	Ala Abu Val Nva Leu Nle Phe	$\begin{array}{c}CH_3 \\CH_2CH_3 \\CH_1(CH_3)_2 \\(CH_2)_2CH_3 \\CH_2CH_1(CH_3)_2 \\(CH_2)_3CH_3 \\CH_2C_6H_5 \end{array}$	0,69 6,13 16,8 46,5 194 \$7,1 141	2,04 64.0 78,5 385 1470 222 1450	3,06 119 224 616 2390 377 1950	0,294 2,08 7,43 13,4 83 13,9 340	$1,93 \\ 51,6 \\ 43,4 \\ 242 \\ 593 \\ 200 \\ 2620$	2,74 76,8 75,5 336 718 336 3250	

модифицированными формами термолизина и нейтральной протеиназы Bacilius brevis 7882 (стрелкой указана гидролизуемая связь)

Обозначения: AcPhe — фермент, обработанный N-оксисукцинимидным эфиром N-ацетил-L-фенилаланина по методике [¹] (см. текст). Условия реакции: буфер 0,17 М трис-кислый малеат-NaOH, pH 7,2, 5 мМ CaCl₂, 25°C; [S]₀=0,03—0,11 мМ; в случае Со(II)-ферментов концентрация Со(II) — 1 мМ.

Константы k11 определены со среднеквадратичной ошибкой 5%.

Таблица 2

Ферментный препарат	Соединения из табл. 1, использованные в корреляциях	Значения о парал 1g k _{II}	определяемых метров Ф	Коэффициент корреляции	Стандарт- ное откло- нение				
Термолизин * Термолизин-Со(II) АсРhе-термолизин АсPhe-термолизин-Со(II) Протеиназа 7882 ** Протеиназа-Со(II) АсPhe-протеиназа АсPhe-протеиназа-Со(II)	$1-5 \\ 1-5 \\ 1-6 \\ 1-6 \\ 1-5,7 \\ 1-5,$	$\begin{array}{c} & \cdot \\ & 0.7 \pm 0.1 \\ & 0.9.1 \pm 0.06 \\ & 1.4 \pm 0.3 \\ & 1.6 \pm 0.3 \\ & 0.4 \pm 0.1 \\ & 0.6 \pm 0.1 \\ & 1.6 \pm 0.3 \\ & 1.9 \pm 0.3 \end{array}$	$\begin{array}{c} 1,9\pm0,3\\ 1,85\pm0,06\\ 2,1\pm0,2\\ 2,2\pm0,2\\ 1,75\pm0,07\\ 1,78\pm0.07\\ 1,7\pm0,2\\ 1,7\pm0,2\\ 1,7\pm0,2 \end{array}$	$\begin{array}{c} 0.997\\ 0.998\\ 0.963\\ 0.963\\ 0.997\\ 0.997\\ 0.994\\ 0.955\\ 0.954\end{array}$	$\begin{array}{c} 0,082\\ 0,059\\ 0,237\\ 0,225\\ 0,0995\\ 0,0975\\ 0,258\\ 0,254\end{array}$				

Параметры корреляций по уравнению $\lg k_{II} = \lg k_{II}^0 + \varphi \pi_R$

Данные из [⁵]. Данные из [⁶].

4*

друг от друга. Как и в случае нативных ферментов, $\lg k_{\Pi}$ при X = Nle и Phe для термолизина и при X = Nle для протеиназы Bacillus brevis 7882 выпадают из корреляционной прямой по уравнению (1), что согласуется с представлением о различной глубине гидрофобных

полостей в активных центрах термолизина и протеиназы Bacillus brevis [5, 6]. С другой стороны, степени активации АсРhe-ферментов, *к*^{модиф}/*k*^{нат}, рассчитанные по этим субстратам, хорошо согласуются

со средними величинами (11 для термолизина и 19 для протеиназы Bacillus brevis) для всех использованных субстратов.

Наблюдение аналогичного с термолизином эффекта активации при обработке N-оксисукцинимидным эфиром N-ацетил-L-фенилаланина протеиназы Bacillus brevis 7882 подтверждает предположение, что наличие активного тирозина вблизи субцентра S1 может быть общим свойством микробных металлопротеиназ, закрепленным эволюцией [3].

Первичная субстратная специфичность ферментов не менялась также при замене Zn(II) в их активных центрах на Co(II), что приводило к аддитивной 1,5-кратной активации как нативных, так и модифицированных ферментов.

Из представленных данных можно сделать вывод, что ацилирование ОН-группы Туг-110 в термолизине (и аналогичного тирозина в протенназе Bacillus brevis 7882) не затрагивает взаимодействия бокового радикала аминокислотного остатка P_1' в дипептидных субстратах с гидрофобной полостью в активных центрах этих ферментов.

Однако отмеченная выше различная степень активации AcPheтермолизина для трипептидных субстратов FA-Gly-Ala-Gly и FA-Gly-Leu-Gly [1, 2] не позволяет распространить этот вывод на более длинные пептидные субстраты без дополнительной эксперимен-. тальной проверки. В этой связи непонятно также, отчего степень активации AcPhe-термолизина по отношению к FA-Gly-Leu-Ala гораздо ниже (в 3,5 раза [1]), чем по отношению к FA-Gly-Leu-NH2, FA-Gly-Leu-Gly и FA-Gly-Leu-Phe (в 20, 20 и 15 раз соответственно), в случае которых специфичность активированного фермента относительно Р' -остатка практически не меняется.

ЛИТЕРАТУРА

- Blumberg, S., Vallee, B. L. Superactivation of thermolysin by acylation with amino acid N-hydroxysuccinimide esters. Biochemistry, 1975, 14, N-11, 2410—2419.
 Holmquist, B., Blumberg, S., Vallee, B. L. Superactivation of neutral proteases: acylation with N-hydroxysuccinimide esters. Biochemistry, 1976, 15, N 21, 4777 4675-4680.

- Blumberg, S. Amino acid residue modified during superactivation of neutral proteases: tyrosine-110 of thermolysin. Biochemistry, 1979, 18, N 13, 2815—2820.
 Schechter, I., Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Communs, 1967, 27, N 2, 457—162.
 Pank, M., Kirret, O., Paberit, N., Aaviksaar, A. Hydrophobic interactions in thermolysin specificity. FEBS Letters, 1982, 142, N 2, 297—300.
 Панк М., Киррет О., Паберит Н., Аавиксаар А. Специфичность нейтральной протеазы Bacillus brevis в реакции с дипептидными субстратами. Изв. АН ЭССР. Хим., 1983, 32, № 3, 157—162.
 Паберит Н. Ю., Панк М. С., Лийдерс М. А., Ванаталу К. П. Очистка и свойства нейтральной металлопротеазы Bacillus brevis. Биохимия, 1984, 49, № 2.
- нейтральной металлопротеазы Bacillus brevis. Биохимия, 1984, 49, № 2,
- 275—284. 8. Панк М., Киррет О. Синтез N-3-(2-фурил) акрилоилпептидов. Изв. АН ЭССР. Хим., 1979, 28, № 4, 297—300. 9. Holmquist, B., Vallee, B. L. Metal substitutions and inhibition of thermolysin: spectra
- of the cobalt enzyme. J. Biol. Chem., 1974, 249, N 14, 4601-4607.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 29/III 1984

Институт химической и биологической физики Академии наук Эстонской ССР

«SUPERAKTIVEERITUD» METALLOPROTEINAASIDE PRIMAARNE SUBSTRAATSPETSIIFILISUS

On näidatud, et termolüsiini ja Bacillus brevis 7882 neutraalse metalloproteinaasi substraatspetsiifilisused aminohappe X kõrvalahela suhtes N-3-(2-furüül) akrüloüül-glütsüül-X-amiidide (FA-Gly-X-NH₂) seerias, kus X=Ala, Abu, Val, Nva, Leu, Nle ja Phe, ei muutu, kui fermente «superaktiveerida» N-atsetüül-L-fenüülalaniini N-hüdroksüsuktsiinimiido-estriga või viia nende aktiivsetesse tsentritesse Zn(II) asemele Co(II). Kovalentse modifiiseerimisega saadava aktivatsiooni aste (tingimustel: temperatuur 25 °C, pH 7,2, 0,17 M tris-maleaat-NaOH puhver) oli kõigi kasutatud substraatide kohta termolüsiini puhul keskmiselt 11 ning B. brevis'e proteaasi puhul 19, mida 1 mM Co(II) lisamine reaktsioonikeskkonda tõstis ligikaudu 1,5 korda.

J. RIIKOJA, Nadezhda PABERIT, Maret PANK, A. AAVIKSAAR

LEAVING GROUP SPECIFICITY OF «SUPERACTIVATED» METALLOPROTEASES

It has been shown that «superactivation» of thermolysin and the neutral protease from *Bacillus brevis* 7882 by their chemical modification with N-acetyl-L-phenylalanine N-hydroxysuccinimide ester as well as the change of Zn (II) for Co (II) in their active sites do not change the specificities of these enzymes against the amino acid X side chain in the substrates $Fa-Gly-X-NH_2$, where X=Ala, Abu, Val, Nva, Leu, Nle and Phe. On the average, an 11-fold activation of thermolysin and 19-fold activation of the *B. brevis* protease at 25 °C and pH 7.2 in 0.17 M Tris-acid maleate-NaOH buffer has been observed, which was additionally increased about 1.5-fold in the presence of 1 mM Co(II) in the reaction medium.