EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÖIDE KEEMIA. 1983, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ХИМИЯ. 1983, № 4

УДК 539.192

P.-E. LOMP, V. SIMKIN, N. STEPANOV

AB INITIO CALCULATIONS OF THE GROUND AND LOW-LYING EXCITED STATES OF BO₂

P.-E. LOMP, V. SIMKIN, N. STÉPANOV. BO2 MOLEKULI MITTEEMPIIRILISED PÕHIOLEKU JA ERGASTATUD OLEKUTE ARVUTUSED

П.-Э. ЛОМП, В. СИМКИН, Н. СТЕПАНОВ. НЕЭМПИРИЧЕСКИЕ РАСЧЕТЫ ОСНОВНОГО И НИЗКОЛЕЖАЩИХ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ МОЛЕКУЛЫ ВО2

(Presented by M. Veiderma)

Many theoretical and experimental studies of the energy levels of linear or near-linear triatomic molecules in open-shell electronic states have been reported in recent years. BO₂, similarly to isoelectronic CO_2^+ , has been the subject of several investigations.

Detailed study of the BO₂ absorption spectrum was carried out by Johns [1]. According to his results, BO₂ is linear in the ground $X^2\Pi_g$ and two lowest excited states, $A^2\Pi_u$ and $B^2 \Sigma_u^+$. The laser-excited fluorescence spectrum investigations [2, 3] confirmed the previous results. But some papers [4–6] predict BO₂ to be bent.

Only few *ab initio* calculations of the electronic states of BO₂ [⁷⁻⁹] have been reported. In [^{7,8}] only the ground $X^2\Pi_g$ state was considered. In [⁹] the $C^2 \sum_{g}^+$ state was predicted, and the perturbational CI technique gave excellent agreement with experimental data. No previous theoretical or experimental studies of the quartet states of BO₂ have been published. In our communication we present the calculation results, obtained for some fragments of potential surfaces of doublet and quartet states for linear $(D_{\infty h})$ or bent (C_{2v}) molecule.

Potential energy was calculated by the standard LCAO-MO-SCF method using the SPUSH [¹⁰] system of programs. The basis sets for B and O atoms consisted of the standard STO-3G sets (basis I) with exponents from [¹¹] or of the standard Huzinaga basis set 9s5p with Dunning's 4s2p contraction (basis II) [¹²].

The leading configurations for ${}^{2}A_{1}$, ${}^{2}A_{2}$, ${}^{2}B_{1}$, ${}^{2}B_{2}$, ${}^{4}A_{1}$, ${}^{4}A_{2}$, ${}^{4}B_{1}$ and ${}^{4}B_{2}$ states were chosen from the proper CI solution. For doublet states, CI calculations were carried out with MO's obtained for the ${}^{4}A_{1}$ state of BO_{2}^{-} and the ${}^{2}B_{2}$ state of BO_{2} in a frame of the restricted SCF procedure. For quartet states, MO's were taken from SCF calculations on ${}^{4}A_{2}$ and ${}^{4}B_{2}$ ones. The leading configurations were, in all the cases, the fundamental ones of the paper [9], similar to those of CO_{7}^{+} [13].

The SCF calculations were carried out in C_{2v} and $D_{\infty h}$ symmetries. The internuclear distance $R_{\rm B-O}$ varied between 2.20 and 2.80 a. u., and bond angle between 180 and 100°. For all doublet states as well as for the ${}^{4}A_{1}$ and ${}^{4}A_{2}$ states, the total energy minimum corresponds to linear geometry. The ${}^{4}B_{1}$ and ${}^{4}B_{2}$ states are bent.

Differences in the total energy values, calculated at different symmetry restrictions, C_s , C_{2v} , $D_{\infty h}$, originate from the different schemes of

Hartree — Fock calculations, used for these symmetries and from the symmetry-breaking effects. They are a subject of the next publication. Equilibrium parameters have been calculated by quadratic approxi-

Equilibrium parameters have been calculated by quadratic approximation of fragments of potential surfaces. The results of geometry optimization, appropriate total energies, excitation and dissociation energies are listed in Table 1.

Equilibrium parameters of BO ₂						
	State					
protection as a set	$X^2 \Pi_g$	$A^2 \prod_u$	$B^2 \sum_{u}^+$	$C^2 \Sigma_g^+$		
<i>R</i> _{в-0} , Å	ol time sub lip		-4211420			
SCF basis I	1.342	1.396				
basis II	1.258	1.302	1.289	1.268		
CI [9]	-	-	-	1.246		
Experimental [1]	1.265	1.302	1.273			
Total energy (a. u.)						
SCF basis I	-171.996	-171.824	-	-		
basis II	-174.360	-174.246	-174.229	-174.193		
CI [9]	-174.597*	-174.498^{**} .	-174.486*	-174.457		
To, eV				1.510		
SCF basis II		3.115	3.554	4.546		
		2.446	2.998	3.785		
Experimental [1]		2.329	3.039			
De, ev	0.005	1 150	0.710			
SCF Dasis II	2.085	1.158	0.719			
ACCESSION AND A STREET, STREET						

* Calculated at $R_{B-0} = 1.265$ Å.

** Calculated at $R_{B-0} = 1.302$ Å

4.

The equilibrium distances R_{B-O} , calculated in basis I, are slightly longer than the experimental ones, but the agreement of basis II and experimental results is excellent.

The fundamental frequencies v_1 and v_2 were calculat d by solving the ordinary vibration problem in a harmonic approximation; their values are listed in Table 2.

Table 2

Table 1

State	Witnetten	SCF basis		Experimental
	Vibration	I I	· II	value [1]
X²∏g	$v_1 \\ v_2$	1079 464	1099	1070 464
A²∏ u	$v_1 \\ v_2$	$1123 \\ 541$	982	994 502
$B^2 \sum_{u}^+$	vi		906	-
$C^2 \Sigma_g^+$	vi	• _ •:	1149	_

Vibration frequencies of BO₂, cm⁻¹

Conclusions. SCF calculations confirm the BO₂ molecule to be linear in the ground $X^2\Pi_g$ and low-lying excited states $A^2\Pi_u$, $B^2\Sigma^+_u$ and $C^2\Sigma^+_g$.

REFERENCES

- 1. Johns, J. W. C. Absorption spectrum of BO2. Can. J. Phys., 1961, 39, N 12, 1738-1768.

- 1738—1768.
 Russell, D. K., Kroll, M., Dows, D. A., Beaudet, R. A. Excited fluorescence spectra of BO₂. Chem. Phys. Lett., 1973, 20, N 1, 153—155.
 Russell, D. K., Kroll, M., Beaudet, R. A. Analysis of the laser-excited fluorescence spectra of BO₂. J. Chem. Phys., 1977, 66, N 5, 1999—2008.
 Серебренников Л. В. ИК-спектр поглощения молекулы BO₂, синтезированной в матрице из аргона. Вестн. Моск. ун-та. Химия, [1975, 16, № 4, 363.
 Коряжкин В. А., Саламова А. А. Частота v₃ в основном электронном состоянии молекулы BO₂. Вестн. Моск. ун-та. Химия, 1975, 16, № 4, 487—489.
 Коряжкин В. А., Матвеев В. К. Изотопные сдвиги в электронном спектре моле-кулы BO₂ и колебательные постоянные основного состояния. Вестн. Моск.
- кулы ВО2 и колебательные постоянные основного состояния. Вестн. Моск.

- кулы BO₂ и колебательные постоянные основного состояния. Вестн. Моск. ун-та. Химия, 1976, 17, № 4, 490—491.
 7. Jug, K., Nanda, D. N. SINDO 1. III. Application to ground states of molecules containing fluorine, boron, beryllium and lithium atoms. Theor. Chim. Acta (Berlin), 1980, 57, N 2, 131—144.
 8. Зайцевская Р. В. Неэмпирические расчеты молекул BH₂, BO₂ и B₂O. Дипломная работа. Хим. фак. Моск. ун-та. М., 1980, 49.
 9. Saraswathy, V., Diamond, J. J., Segal, G. A. Theoretical calculation of the lowest electronic excited states of BO₂. J. Phys. Chem., 1983, 87, N 5, 718—719.
 10. Пулышев В. И., Симкин В. Я., Сафонов А. А., Хрустов В. Ф., Дементьев А. И., Степанов Н. Ф. Комплекс программ для неэмпирических расчетов молекул. Вестн. Моск. ун-та. Химия, 1983, 24, № 1, 38—39.
 11. Clementi, E., Roetti, E. Roothaan Hartree Fock atomic wave functions. Basis functions and their coefficients for ground and certain excited states of neutral
- functions and their coefficients for ground and certain excited states of neutral and ionized atoms. - Atom. Data and Nucl. Data Tables, 1974, 14, N 3, 177-478.
- 12. Dunning, T. H. Gaussian basis functions for use in molecular calculations. I. Con-
- 12. bandwig, T. i. Garbardonic basis relations for the first row atoms. J. Chem. Phys., 1970, 53, N 7, 2823—2833.
 13. Praet, M. Th., Lorquet, J. C., Raseev, G. Unimolecular reaction paths of electronically excited species. IV. The C²∑⁺_g state of CO⁺₂. J. Chem. Phys.,

1982, 77, N 9, 4611-4618.

Tallinn Polytechnic Institute

Received July 8, 1983

All-Union Centre for Research of Surface and Vacuum Properties

Moscow State University