EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÕIDE KEEMIA. 1983, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОГІ ССР. ТОМ 32 ХИМИЯ. 1983, № 4

https://doi.org/10.3176/chem.1983.4.02

УДК 631.851.001.5

Э. ААСАМЯЭ, М. ВЕЙДЕРМА

ОЦЕНКА ЭСТОНСКИХ ФОСФОРИТНЫХ КОНЦЕНТРАТОВ КАК СЫРЬЯ ДЛЯ КИСЛОТНОЙ ПЕРЕРАБОТКИ

Существует классификация фосфоритных руд Прибалтийского бассейна с их разделением на четыре типа: чистые, магнезиальные, железистые и железисто-магнезиальные [¹]. За основу классификации приняты соотношения масс MgO: P_2O_5 и Fe₂O₃: P_2O_5 в рудах (т. н. матниевый и железистый модули). Требования к качеству фосфоритных концентратов этого бассейна, предназначенных для кислотной переработки, установлены лишь для концентрата Кингисеппского месторождения (MPTУ 6-12-18-75): содержание MgO и полуторных оксидов (R₂O₃) в нем не должно превышать соответственно 2,5 и 3% (при содержании не менее 28% P_2O_5).

Фосфорнты Эстонской ССР имеют относительно переменный состав, значительно различаются по содержанию примесей и получаемые из них концентраты. Как известно, при кислотной переработке фосфатного сырья вредными примесями являются прежде всего соединения железа и алюминия (полуторные оксиды), а также магния. С целью оценки пригодности концентратов эстонских фосфоритов для кислотной переработки в фосфорные и сложные удобрения нами представлена их классификация с учетом содержания вышеуказанных вредных примесей.

Учитывая, что в эстонских фосфоритах, как правило, содержание Fe_2O_3 составляет более 75—80% суммы полуторных оксидов, можно ограничиться определением лишь Fe_2O_3 и MgO.

При установлении критерия пригодности сырья необходимо было выделить из числа железосодержащих минералов пирит, поскольку последний, в отличие от большинства других железосодержащих минералов природных фосфатов, практически не растворяется в средах, образующихся при серно- и фосфорнокислотной переработке природных фосфатов, и входит в состав нерастворимого балластного остатка. При азотнокислотных методах переработки фосфатного сырья пирит, наоборот, интенсивно реагирует с кислотой и этим вызывает выделение оксидов азота, вспенивание пульпы и другие неблагоприятные явления. Содержание пирита в эстонских фосфоритах достигает иногда 80% от общего количества железосодержащих минералов (в пересчете на Fe₂O₃).

Таким образом, при характеристике эстонских фосфоритов необходимо отдельно представить содержание как сульфидных железосодержащих минералов (т. н. пиритное железо), так и железа в виде других минералов — гидроксидов, глауконита, фосфатов, сульфатов и др. (непиритное железо). Различные формы железа можно установить по данным определения в фосфорите общего железа, общей и сульфатной серы (%) [²] по следующим формулам:

сульфидная сера $(SO_3) =$ общая сера $(SO_3) -$ сульфатная сера (SO_3) , %

пиритное железо (Fe₂O₃) = <u>сульфидная</u> сера (SO₃)×160

 4×80

непиритное железо (Fe_2O_3) = общее железо (Fe_2O_3) — пиритное железо (Fe₂O₃).

Данные анализов флотационных фосфоритных концентратов, полученных в заводских условиях (месторождения Маарду), при опытнопромышленных испытаниях или в лабораторных условиях (новые месторождения — Тоолсе, Азери-Сака, Раквере *), свидетельствуют о значительных колебаниях содержания примесей как по месторождениям, так и в пределах одного месторождения (табл. 1).

На основе результатов лабораторных исследований процессов переработки эстонских фосфоритов серной и фосфорной кислотами установлено [3-8], что для получения из них концентрированных фосфорных и сложных удобрений стандартного качества модули примесей в концентратах не должны превышать следующие величины:

а) при получении двойного суперфосфата с применением экстракционной фосфорной кислоты из кольского апатита: модуль непиритного железа Fe₂O₃: P₂O₅ — до 4—5%, магния MgO: P₂O₅ — до 8—9%, комплексный модуль (сумма указанных двух модулей) — до 12—14%;

 б) при получении аммофоса и сернокислотной нитроаммофоски: модуль непиритного железа Fe₂O₃ : P₂O₅ — до 7-8%, магния MgO : P₂O₅ — до 15—16%, комплексный модуль — до 20—22%.

При азотнокислотной переработке фосфоритов наиболее важен мо дуль пиритного железа, который должен иметь минимальное значение. Однако предварительным обжигом фосфорита либо введением в процесс специальных добавок можно устранить отрицательное влияние пиритного железа [9-11].

В соответствии с полученными данными эстонские фосфоритные концентраты, с точки зрения пригодности для процессов кислотной переработки, разделены на 8 типов (табл. 2), из них 4 относятся к простым, 4 — к сложным разновидностям концентрата (последние отличаются повышенным значением двух или трех модулей). Пиритовым типом считаются концентраты, у которых более 50% общего железа представлено пиритом и модуль пиритного железа составляет свыше 5%. Ферроидными названы такие концентраты, у которых модуль непиритного железа 5-8%.

Среди изученных фосфоритных концентратов различных месторождений наиболее часто встречаются следующие типы:

Маарду — пиритовый,

Тоолсе — пиритовый и ферроидный, Азери-Сака — пирито-магнезиальный, Раквере — ферроидно-матнезиальный.

Таблица 1

Месторождение	Co	Содержание	Модули, %		
		P ₂ O ₅ , %	$MgO: P_2O_5$	пирит. Fe ₂ O ₃ : P ₂ O ₅	непирит. Fe ₂ O ₃ : P ₂ O ₅
Маарду Тоолсе Азери-Сака Раквере		$24 - 31 \\ 22 - 29 \\ 24 - 30 \\ 24 - 30$	1-5 3-12 7-16 6-16	5-11 3-13 0,7-14 0,4-7	1,3-3 2,4-10 3,1-6 3,4-6

Показатели фосфоритных концентратов

Фосфоритные концентраты новых месторождений получены Государственным научно-исследовательским институтом горнохимического сырья и Управлением геологии ЭССР.

Таблица 2

Классификация фосфоритных концентратов

chernet i there are	Модули, %			
Тип (разновидность)	магния MgO : P ₂ O ₅	пиритного железа пирит. Fe ₂ O ₃ : P ₂ O ₅	непиритного железа непирит. Fe ₂ O ₃ : P ₂ O ₅	
and the state of the state of the	Простые	and setting the		
Чистый Ферроидный Пиритовый Магнезиальный	0 <u>-9</u> 0 <u>-9</u> 0 <u>-9</u> 9 <u>-16</u>	$0-5 \\ 0-5 \\ >5 \\ 0-5$	0-5 5-8 0-5 0-5	
	Сложные	and a standard		
Ферроидно-пиритовый Ферроидно-магнезиальный Пирито-магнезиальный Ферроидно-пиритомагнезиальный	$\begin{array}{r} 0-9\\ 9-16\\ \cdot 9-16\\ 9-16\end{array}$	>50-5>5>5>5	$5-8 \\ 5-8 \\ 0-5 \\ 5-8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\$	

В двух образцах концентрата Тоолсеского месторождения величины модулей превышают значения, которые в классификации даются как предельные. Ферроидно-пиритовый тип концентрата не обнаружен.

Для получения двойного суперфосфата наилучшим сырьем являются чистый и пиритовый типы концентрата. При получении аммофоса и сернокислотной нитроаммофоски могут быть с успехом использованы также ферроидный, магнезиальный и пирито-магнезиальный типы концентрата. Применение концентратов ферроидно-магнезиального и ферроидно-пирито-магнезиального типов при получении удобрений связано с большими трудностями, и этот вопрос требует дальнейшего изучения. Для азотнокислотной переработки наиболее подходящим сырьем служат непиритные типы концентратов.

Наиболее пестры по составу и значению модулей концентраты месторождений Раквере и Азери-Сака (по четыре типа). Поэтому уточнение распространения руд отдельных типов, также как и разработка более эффективных способов и режимов их обогащения, представляется задачей первостепенной важности.

ЛИТЕРАТУРА

Загураев В. Г., Хазанович К. К., Шувалова Н. К. Предварительная классифи-кация геолого-промышленных типов ракушечных руд Прибалтики. Горнохим. пром-сть. Науч.-техн. реф. сб. (НИИТЭХИМ), вып. 2. М., 1982, 1—3.
 Окнина В. А. Методы химического анализа фосфатных руд. М., 1961.

- 3. Аасамяэ Э. Э., Вейдерма М. А. Получение экстракционной фосфорной кислоты и двойного суперфосфата из фосфоритных концентратов месторождения Тоолсе. — Хим. пром-сть, 1978, № 3, 193—196. — 4. Аасамяэ Э. Э., Вейдерма М. А., Ребане А. И. Получение аммофоса и нитро-аммофоски из фосфоритов месторождения Тоолсе. — Хим. пром-сть, 1979,
- № 12, 722—724. 5. Аасамяэ Э. Э., Вейдерма М. А. Получение экстракционной фосфорной кислоты фосфорной степени
- и аммофоса из тоолсеских фосфоритных концентратов различной степени обогащения. Хим. пром-сть, 1982, № 7, 406—408.
 Аасамяэ Э., Вейдерма М., Ребане А. Исследование переработки фосфоритов месторождения Азери в двойной суперфосфат. Изв. АН ЭССР. Хим., 1979, 28, № 3, 198-203.
- Аасамяэ Э., Вейдерма М., Ребане А. Исследование получения фосфорной кис-лоты и сложных удобрений из фосфоритов месторождения Азери. Изв. АН ЭССР. Хнм., 1979, 28, № 3, 204-209.

- 8. Аасамяя Э., Вейдерма М. Состав и кислотная переработка фосфорита участка
- Аасамяя Э., Веидерма М. Состав и кислотная переработка фосфорита участка Рягавере. Изв. АН ЭССР. Хим., 1982, 31, № 3, 169—174.
 Аасамяя Э. Э., Вейдерма М. А., Кудрявцева Е. Н. Исследование азотнокислотного разложения тоолсеского фосфорита. Тр. Таллин. политех. ин-та, № 479. Неорг. химия и технология, І. Таллин, 1980, 3—11.
 Вескимяя Х. И., Вейдерма М. А., Аасамяя Э. Э., Куусик Р. О. Исследование обжига и азотнокислотного разложения обожженных фосфоритов Эстонской ССР. Тр. Таллин. политех. ин-та, № 479. Неорг. химия и технология, І. Таллин, 1980, 13—20.
 Компаркеная авсотнокислотиет и политех. ин-та, М. 479. Неорг. химия и технология, I. Таллин, 1980, 13—20.
- 11. Комплексная азотнокислотная переработка фосфатного сырья. Под ред. А. Л. Гольдинова и Б. А. Копылева. Л., 1982, 58.

Таллинский политехнический институт

Поступила в редакцию 1/II 1983

E. AASAMÄE, M. VEIDERMA

EESTI FOSFORIIDIKONTSENTRAATIDE KUI HAPPELISE TÖÖTLEMISE TOORAINE HINNANG

Artiklis on esitatud Eesti fosforiidikontsentraatide liigitus (8 liiki), mis põhineb fosforiidis esinevate lisandite (magneesiumi, püriitse ja mittepüriitse raua ühendid) ja P2O5 suhete (nn. moodulite) erinevusel, seega tooraine sobivusel mineraalväetiste valmistamiseks.

E. AASAMÄE, M. VEIDERMA

EVALUATION OF ESTONIAN PHOSPHORITE CONCENTRATES AS RAW MATERIAL FOR ACIDULATION

Estonian phosphorite concentrates as raw material for producing mineral fertilizers are divided into 8 groups. As a basis for the arrangement, the weight ratios of the magnesium, pyritic and nonpyritic iron content to P_2O_5 (modules) have been used.