EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 31. KÕIDE KEEMIA. 1982, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ХИМИЯ. 1982, № 4

УДК 577.04; 547.681; 535.3'032: 616-006-02

Б. СЕРГЕЕВ, М. ГУБЕРГРИЦ, В. КОБЛЯКОВ

ОКИСЛЕНИЕ БЕНЗ(А)ПИРЕНА ГИДРОПЕРЕКИСЬЮ КУМИЛА В ФЕРМЕНТНЫХ СИСТЕМАХ С УЧАСТИЕМ ЦИТОХРОМОВ P-450 И P-448

Окисление бенз (а) пирена (БП), одного из важнейших канцерогенов, в микросомах печени катализируется монооксигеназной ферментной системой, терминальным звеном которой является цитохром Р-450. В окисленной форме он связывается с БП и после восстановления (в качестве донора электронов ферментная система использует NADPH) ферментсубстратный комплекс взаимодействует с молекулярным кислородом, образуя тройной комплекс: восстановленный цитохром P-450 — субстрат — кислород. Второй электрон от NADPH активирует кислород в тройном комплексе, который распадается на эпоксид БП, воду и окисленный цитохром P-450 [1]. Предполагается, что эпоксиды БП гидролизуются до дигидродиолов (ДДО) БП в присутствии эпоксидазы [2] или подвергают нуклеофильной атаке белки и нуклеотиды. Другой путь в метаболизме БП — возможная перегруппировка эпоксидов до фенолов или образование фенолов гидроксилированием исходной молекулы без промежуточного эпоксидирования БП. Ответ на этот и другие вопросы, связанные с пониманием химического канцерогенеза, даст детальное изучение природы активного кислорода в тройном комплексе. Наиболее вероятной механической моделью образования эпоксидов является т. н. оксеноидный механизм [2], согласно которому оксен (кислород с шестью электронами, названный так по аналогии с карбенами CR2 и нитренами NR) и есть активный кислород, а оксеноидным реагентом выступает перекисный комплекс (Fe³⁺O₂²⁻) [³], существование которого, казалось бы, подтверждается проявлением каталитических свойств цитохрома в присутствии перекиси водорода и органических гидроперекисей без участия NADPH/O2. Однако в работах последних лет [4,5] отмечено несоответствие между продуктами, полученными при окис-лении одного субстрата обеими системами, что ставит под сомнение адекватность замены NADPH/O2 гидроперекисями.

Цель настоящей работы — оценка возможности использования гидроперекиси в ферментной системе для моделирования процессов микросомального окисления ксенобиотиков.

Методика и объекты исследования

Микросомальную фракцию выделяли из печени крыс (самцов) линии Вистар, весом 250—300 г. Печень гомогенизировали в трехкратном 1,15%-ном растворе КСІ. Центрифугировали гомогенат при 12000 g в течение 15 мин, затем — надосадочную жидкость при 105000 g в течение 1 ч. Осажденные микросомы суспендировали в 1,15%-ном КСІ. В работе использовали как интактных, так и индуцированных 3-метилхолантреном крыс, которым за сутки до начала опыта вводили раствор

Хроматограмма разделения в тонком слое реакционной смеси продуктов ферментативного окисления бенз(а)пирена в микросомальной системе. I — разделяющая смесь гексан — этилацетат 3:1; II — разделяющая смесь бензол — этанол 10:3.

		Rf	Окраска при	
	Вещество		254 нм	в NH ₃ DH
1. 2. 3. 4. 5. 6. 7. 8.	4-ОН-БП? 9,10-ДДО БП 7,8-ДДО БП 4,5-ДДО БП 3,6-хинон БП 1,6-хинон БП 9-ОН БП 3-ОН БП	0,16 0,29 0,36 0,38 0,46 0,63 0,79 0,83	голубая фиолетовая фиолетовая голубая красная желтая фиолетовая голубая	желтая бледно-розовая зеленая зеленая
9. 10.	6-ОСН3 БП БП	0,90 0,92	фиолетовая фиолетовая	=

3-метилхолантрена (3МХ) концентрацией 25 *мг/кг* в минеральном масле. Концентрацию белка определяли биуретовым методом [⁶]. Общий объем инкубационной смеси 2 *мл*, продолжительность опытов 2 *мин.* Инкубационная среда содержала: микросомальный белок (2 *мг/мл*); MgCl₂ (8 *мМ*); раствор меченого БП в этаноле (7,10-С¹⁴, 60,7 µ*л/нМ*; RCI Amersham, Англия) концентрацией 10⁻⁶ *M* и фосфатный буфер (5 *мМ*); рН 7,4. Опыты термостатировали при температуре 37±0,1°С, в тех же случаях, когда определяли кажущуюся энергию активации, температуру варьировали от 4 до 37°. Реакция начиналась добавлением в инкубационную смесь 4 *мМ* NADPH или 0,4 *мМ* гидроперекиси кумила (ГПК), в зависимости от условий опыта. Останавливали реакцию добавлением в среду этилацетата в равном объеме.

БП и продукты его окисления извлекались из реакционной смеси трехкратным (по 2 мл) экстрагированием этилацетатом, экстракт упаривали до 0,3 мл на роторном испарителе и наносили на пластинки «Silufol UV-254» по 0,1 мл для тонкослойного хроматографического разделения (TCX). Чтобы определить местоположения ДДО меченого БП, на ту же пластинку в качестве индикатора наносили смесь ДДО немеченого БП, полученную путем окисления немеченого БП в инкубационной среде, как было указано выше. Метаболиты БП разделяли методом TCX в двух направлениях: сначала в смеси растворителей этилацетат—гексан (1:3), а затем бензол—этанол (10:3) (рисунок).

Продукты окисления БП идентифицировали по флуоресцентным спектрам, снятым на приборе «Перкин-Эльмер», и/или по абсорбционным спектрам, снятым на спектрофотометре «Specord UV-VIS». ДДО меченого БП разделяли методом TCX, используя систему растворителей бензол—этанол (10:3). Количественное определение ДДО БП производилось на приборе «Dünnschicht Skenner II Bertold» (ФРГ) по содержанию ¹⁴С. В работе использованы х.ч. реактивы.

Все эксперименты проводили в лаборатории канцерогенных веществ Всесоюзного онкологического научного центра АМН СССР в соответствии с программой сотрудничества обоих учреждений в области изучения химического канцерогенеза.

Результаты исследования и их обсуждение

Индукция микросом ЗМХ вызывает смещение максимума поглощения цитохрома P-450 в СО-дифференциальном спектре (448 *нм*), что связано с появлением цитохрома P-448, отличающегося высокой каталитической активностью по отношению к БП. Скорость окисления БП почти в 20 раз больше, чем в интактной микросомальной системе [7]. Для интактных микросом, содержащих NADPH, характерно незначительное увеличение выхода 4,5-ДДО БП (табл. 1), а для индуцированных микросом, содержащих NADPH, помимо значительного увеличения выхода ДДО БП, меняется и их распределение — выход 9,10-ДДО БП составляет примерно 50% общего выхода ДДО БП. Картина выхода ДДО БП в ферментной системе, содержащей ГПК вместо NADPH, резко меняется. Как для интактных (табл. 1, 1), так и для индуцированных микросом (табл. 1, 2) характерно появление только одного 4,5-ДДО БП. Другие ДДО БП не были обнаружены.

Полагая, что действие эпоксидазы не зависит от температуры и положения атома кислорода в молекуле БП, можно сделать вывод, что рассчитанная энергия активации определяет энергию связывания цитохрома с субстратом. С увеличением энергии активации уменьшается энергия связывания. Как видно из табл. 2, энергия активации меняется практически при переходе от интактных к индушированным микросомам, содержащим NADPH, только для 4,5-ДДО. Для ферментных систем, содержащих ГПК, процесс образования ДДО БП — эпоксидов БП — не зависит от температуры.

Таким образом, данные таблиц проясняют два существенных обстоятельства. Во-первых, с повышением сродства БП к ферментной системе, содержащей цитохром Р-448 (в отличие от интактной ферментной системы), изменяется и распределение ДДО БП. Это, вероятно, связано с возможным существованием в микросомах, индуцированных

Таблица 1

в микросомах печени крыс интактных (1) и индуцированных змах (2), нм						
Микро- сомы	Ферментная система	4,5-ДДО	7,8-ДДО	9,10-ДДО		
1	NADPH/O ₂	$9,16 \pm 1,57$	5,90±0,81	5,30±0,81		
	ГПК	$8,43 \pm 1,34$	на уровне фона	на уровне фона		
2	NADPH/O ₂	$21,68 \pm 1,92$	27,62±2,10	49,30±3,71		
	ГПҚ	$12,46 \pm 1,76$	на уровне фона	на уровне фона		

Выход дигидродиолов БП, образующихся при его метаболизме микросомах печени крыс интактных (1) и индуцированных ЗМХ (2), нМ

255

Таблица 2

Энергия активации дигидродиолов БП при его метаболизме в микросомах печени крыс интактных (1) и индуцированных ЗМХ (2), ккал/моль

Микро- сомы	Ферментная система	4,5-ДДО	7,8-ДДО	9,10-ДДО
1	NADPH/O ₂ ГПК	1,433±0,353 около 0	1,195±0,268	1,218±0,302
2	NADPH/O ₂ ГПҚ	2,383±0,373 около 0	$1,520 \pm 0,363$	1,524±0,474

ЗМХ, изоэнзимов, проявляющих разную областную селективность при связывании с субстратом. В нашем случае константа сродства к молекуле БП изоформы цитохрома Р-450 в индуцированных микросомах для положений 9,10 значительно выше, чем для 4,5 и 7,8. Это подтверждается и данными табл. 2. Увеличение энергии активации процесса образования 4,5-ДДО БП в индуцированных микросомах свидетельствует о том, что комплементарность фермента к переходному состоянию молекулы БП при образовании эпоксида в положении 4,5 понижается.

Во-вторых, гидроперекисный механизм отличается от т.н. оксеноидного прежде всего разным распределением ДДО БП: при замене NADPH/O₂ на ГПК в ферментной системе образуется только 4,5-ДДО БП, т. е. в положении молекулы, отличающемся наибольшей реакционной способностью в реакциях присоединения кислорода [8]. Поэтому можно предположить, что на первой стадии окисления БП в системе, содержащей ГПК, образуется комплекс цитохром Р-450 — ГПК, который и взаимодействует с субстратом. В образованном тройном комплексе донором электрона служит тиольная группа фермента, связывающая протогем с белком, что приводит к гомолитическому разрыву связи О-О в ГПК (в отличие от оксеноидного механизма, в котором предусматривается гетеролитический разрыв связи О-О) [5]. Терминальный атом кислорода гидроперекиси проявляет электрофильные свойства и независимо от структуры фермента присоединяется к атому углерода в молекуле БП с максимальной электронной плотностью. Другим объяснением различия в выходе ДДО для NADPH/O2 и ГПК-содержащих ферментных систем служит предположение о существовании изоформ цитохрома Р-450, обладающих различной каталитической активностью в присутствии разных гидроперекисей. Это подтверждают данные [5] о различии продуктов окисления одного и того же субстрата при использовании различных гидроперекисей. Поэтому необходимы дальнейшие исследования особенностей окисления субстратов в ГПК-содержащих системах, чтобы окончательно решить вопрос о правомерности замены NADPH гидроперекисями.

ЛИТЕРАТУРА

- 1. Estabrook, R. W., Patrizi, V. W., Prough, R. The activation of polycyclic hydrocarbons: cytochromes P-450, oxygen and electrons. - Canc. Enzym., 1976, v. 12, p. 103-117.
- Jerina, D. M., Daly, J. W., Witkop, B., Zalzman-Mirenberg, P., Udenfriend, S. 1,2-naphthalene oxide as an intermediate in the micro-somal hydroxylation of naphthalene. Biochem., 1970, v. 9, p. 147—155.
 Capdevila, I., Estabrook, R. W., Prough, R. A. Differences in the mechanisms of NADPH- and cumene hydroperoxide supported reactions of cytochrome P-450. Arch. Biochem. Biophys., 1980, v. 200, p. 186—196.
 Ullrich, V., Staudinger, H. Aktivierung von Sauerstoff in Modellsystemen in Biochemie des Sauerstoffs. New York, 1969, S. 229.

- White, R. E., Coon, M. J. Oxygen activation by cytochrome P-450. Ann. Rev. Biochem., 1980, v. 49, p. 315-336.
 Gornall, A. D., Bordavill, Ch. J., David, M. N. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 1949, 1949, 1949. v. 177, p. 151-166.
- W. 177, p. 151-166.
 Kuntsman, W., Levin, W., Schilling, G., Alvares, A. The effects of 3-methylcholanthrene and phenobarbital on liver microsomal hemoproteins and on the hydroxylation of benzpyrene. In: Microsomes and Drug Oxidation. New York London, v. 2, p. 349-370.
 Pullman, A., Pullman, B. Electronic structure and carcinogenic activity of aromatic molecules. Adv. Canc. Res., 1955, v. 3, p. 117-122.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 10/II 1982

B. SERGEJEV, M. GUBERGRITS, V. KOBLJAKOV

BENSO(A)PÜREENI OKSÜDEERIMINE ENSÜÜMISÜSTEEMIDES KUMEENI HÜDROPEROKSIIDIGA TSÜTOKROOMIDE P-450 JA P-448 MANULUSEL

Benso(a) püreeni (BP) oksüdeerimisel NADPH-sõltuvates ensüümisüsteemides, mida benso(a)pureeni (bP) oksudeerimisei NADPH-soltuvates ensuumisusteemides, mida sisaldavad indutseerimata (1) või 3-metüülkolantreeniga indutseeritud (2) mikrosoomid, on BP dihüdrodioolide (DHD) saagised erinevad. Nii on süsteemis 2 BP-9,10-DHD saagis tunduvalt suurem kui BP-4,5-DHD ja BP-7,8-DHD saagised. BP-DHD tekke aktivatsioonienergia süstéemis 2, võrreldes süsteemiga 1, on suurem ainult BP-4,5-DHD osas. On oletatud, et BP seostub tsütokroom P-450 eri vormidega stereoselektiivselt. kui asendada NADPH mõlemas süsteemis kumeeni hüdroperoksiidiga, siis moodustub ainult BP-4,5-DHD, mille saagis ei olene temperatuurist. See viitab võimalusele, et BP oksüdeerimise mehhanism NADPH ja kumeeni hüdroperoksiidi korral on erinevad.

B. SERGEYEV, M. GUBERGRITS, V. KOBLYAKOV

OXIDATION OF BENZO(A) PYRENE BY CUMENE HYDROPEROXIDE IN ENZYMATIC SYSTEMS CONTAINING CYTOCHROMES P-450 AND P-448

Under the oxidation of benzo(a)pyrene (BP) in NADPH-depending enzymic systems Under the oxidation of benzo(a)pyrene (BP) in NADPH-depending enzymic systems (ES) containing intact (I) and by 3-methyl-cholanthrene-induced (II) microsomes, a certain difference in the yield of dihydrodiols (DDO) of BP was stated. Thus, in the case of (II) the yield of 9,10-DDO-PB is markedly increased as compared with the 4,5- and 7,8-isomers. The apparent energy of activation of the DDO formation in II is somewhat elevated as compared with the I only for the 4,5-DDO of BP. Therefore, a stereoselectivity in binding BP with different forms of cytochrome is assumed. The substitution of NADPH in I and II by cumene hydroperoxide (CHP) is a cause of the formation of 4,5-DDO only, the yield being independent from the temperature. This phenomenon indicates the difference in the mechanisms of the oxidation of BP in enzymatic systems containing NADPH or CHP.