ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 30 ХИМИЯ. 1981, № 4

УДК 677.494.675+543.422.4

O. KIRRET, P.-A. KOCH, Lilja LAHE

CHARACTERIZATION AND IDENTIFICATION OF POLYAMIDE FIBRES BY INFRARED SPECTROMETRIC METHOD

According to the recommendation 2076—1973 of the International Standardization Organization (ISO), polyamide fibres are such chemical fibres whose polymer consists of linear (aliphatic) macromolecules with a periodically occurring —CO—NH-group in the chain. This standard has been supplemented with a concept; polyaramide, marking such chemical fibres whose polymer is an aromatic long-chain polyamide where at least 85% of the amido groups are directly bound to two aromatic nuclei, up to 60% of amido groups being possibly replaced by the aromatic imido groups [¹]. The world industrial output of polyamide fibres comprises more than five hundred trade names.

Ås seen from Table 1, beginning with PA 3 to PA 12, the percentage of carbon increases from 60.86 up to 73.31%, while that of nitrogen falls from 11.24 to 6.82%, and hydrogen increases from 9.77 to 11.41%. The percentage of carbon in the Qiana alicyclic polyamide fibre is almost identical with that of PA 12 as well as those of nitrogen and hydrogen.

Elemental analysis was performed on a Hewlett-Packard analyzer model 185 (analyst R. Soosalu). Polyamides are synthesized from various monomers of different chemical structure, a member of polyamide fibres, such as PA 3, PA 4, PA 6, PA 7, PA 8, PA 9, PA 11; PA 12, PA 6.6 and PA 6.10 being prepared from the polymers obtained. The abbreviation «PA» means polyamide, the number is the carbon atom number in a polymer structural unit. The characterization and identification of the above fibres is rather complicated from the viewpoint of polymer analysis, but the problem requires a solution. Several attempts have been made to analyze organic and inorganic solvent

Table 1

Carling and an arrest	and the second se				911100-0017 B
Trade name	Proveniance	Type of fibre	С	H	N
Helanca	Netherlands	PA 3	60.86	9.77	11.24
Kapron	USSR	PA 6	63.27	9.83	11.61
Anid	USSR	PA 6.6	65.07	10.12	12.40
Oenanth	USSR	PA 7	65.84	10.23	10.72
Polyamide	GFR	PA 7	65.79	10.40	10.74
Rilsan	France	PA 11	73.29	11.17.	7.56
Undecane	USSR	PA 11	71.81	11.20	7.42
Grilamid	Switzerland	PA 12	73.31	11.41	6.82
Qiana	U.S.A.	Alicycl. PA	72.66	10.67	6.59
Nomex	U.S.A.	Arom. PA	69.24	4.18	11.29
Fenilon	USSR	Arom, PA	69.39	4.22	

Elemental analysis of some investigated polyamide fibres, %

Note: O_2 is estimated from the difference.

3 ENSV TA Toimetised. K 4 1981

Fig. 1a. The infrared spectra of some polyamide fibres: 1 — Helanca; 2 — Kapron; 3 — Anid; 4 — Oenanth; 5 — Undecane.

				Tuble	i
Melting	points	of	polyamide	fibres	

T 11

[·], U	
Polyamide 3	340
Polyamide 4	256
Polyamide 6	215
Polyamide 7	225
Polyamide 8	200
Polyamide 9	210
Polyamide 11	190
Polyamide 12	180
Polyamide 6.6	255
Polyamide 6.10	214
Alicyclic PA Qiana	275
Aromatic PA Nomex *	370
Aromatic PA Kevlar *	410

* decomposes

solubility of polymer fibres by different chemical methods [¹]. Pyrolysismass spectrometry has been also used to characterize textile fibres [²]. Pyrolysis-gas chromatography has made it possible to qualitatively differentiate between PA 3, PA 6, Pa 6.2, PA 7, PA 11, PA 12 and the aromatic polyamide fibre Nomex [³].

The aim of this work was to find the possibilities of characterizing various polyamide fibres of different chemical structure and physicochemical properties (aliphatic, alicyclic and aromatic) using the infra-

red spectrometric method as well as elemental analysis and data on the melting points. As polyamide fibres are industrial polymers manufactured in different chemical works under different production conditions, the melting points of fibres of the same type may differ within several degrees (Table 2). A heated-plate microscope may be used to determine the melting points. Infrared spectra were taken on a UR-10 using KBr pellet method. They are shown in Fig. 1.

The absorption bands of infrared spectra of the above polyamide

Fig. 1b. The infrared spectra of some polyamide fibres: 6 — Nylon 12; 7 — Rilsan; 8 — Qiana; 9 — Kevlar; 10 — Nomex.

fibres (aliphatic, alicyclic, and aromatic) and their interpretation are given in Table 3. More specific absorption bands are presented in Tables 4 and 5. The absorption bands of infrared spectra of polyamides are due to the vibrations of polymer chain forming CH₂- and strongly polar NH-groups. The stretching vibration of the NH-group of an aliphatic polyamide may be expressed by wave number 3300 cm⁻¹, that of C=0 (amide band I) by 1640 cm⁻¹, coupled vibration (amide band II) by 1500—1555 cm⁻¹. This is valid for the aliphatic and alicyclic polyamides. In the case of aromatic polyamides the vibrations of the benzene ring and C=C are added. In the case of aromatic polyamides the vibration frequencies of the NH-group are greater. Table 6 presents data on the vibration frequencies of secondary amido groups taken from [⁵] and obtained by the authors.

The structural units of alicyclic polyamide fibre Qiana and aromatic polyamide fibres (Nomex and Kevlar) are given in the form of schemes taken from [²].

A structural unit of Qiana contains two hexyl groups in addition to the NH-, CH_{2} - and CO-groups. In the infrared spectrum of Qiana two absorption bands occur in the regions of 700 and 900 cm⁻¹ not met with in a spectrum of any other polyamide fibre. Nomex and Kevlar are of a very similar chemical structure: Nomex is a poly (meta-phenylene isophthalamide), Kevlar — poly (para-pheny-lene terephthalamide). The differentiation between them on the basis of different intensities of fragment ions of mass spectra is possible but very complicated [²].

3*

283

Table 3	Assignment	13	51	$\gamma(C=O)$; amide(VI) $\gamma(NH)$; amide(V)	r (CH ₂); γ(CH)	y(un) increas	part -	skeletal vibrations		v(CC)		$\{v(CN) + \delta(NH);\$	W(CH)	γ(CH2) δ(CH2) γ(CH)
ss, cm ⁻¹	Kevlar PA-arom.	12	525	665	725	865 865	068	980 1020		1110	1180	1240	1310	1403 1450 1465 1485
mide fibre	Fenilon PA-arom.	II	~	570 682	720	820 860	930	980 1000	1040	1080	1165	1235	1300 1325 1380	$^{1410}_{1420}_{1460-75}$
latic polya	Nomex PA-arom.	10	10 Maril 10 /	556 570 675	720	820 860	920	980 1000	24	1080	1130	1240	1300 1325 1380	1410 1430 1470 1480
nd arom	Qiana	6	520 537		720		900 912 960	1010	-	1115	1165	1225	1305 1336 1360	1450
liphatic a	Nylon PA 12	8	537	580	720	855	948	1030	1068	1124	1161	1223	1370	1445—55 1470
sectra of a	Grilamid PA 12	2	535	their	720		945	binit	1065	1122	1160	1230	1372	1440—60 1470
nfrared si	Rilsan PA 11	9	545	580	720	irare fund	938	ands ymer yibr	1060	1124	1160	1225 1280	1330—50 1370	1420—60 1470
bands of i	Undecane PA 11	5	540	577	725	830	928 960	1030		1120	1170	1228	1370	1420—50 1465 1480
bsorption	Oenanth PA 7	4	ble 6	577 685	725	are s ndar	937	NHe es a	oni inci a.c.	1080	1165	1225 1270	1358	1420—50 1465 1480
A	Anid PA 6.6	3	ven i Nopse	577 689	725	(or)	935	X LINE X	1040 1064	0711	1180	1225 1270	1370	1420—50 1473
inter Tailys Vital	Kapron PA 6	2	520	577 685	730	To analy	930 960	1030	1075	1120	1170	1240	1370	1420—50 1465 1480
(9)(10) (5) (0)	Helanca PA 3	1	532	580 690	730	Sidi	934	i hen	1040-65	011	1140	1275	1370	1418—55 1465 1480

284

O. Kirret, P.-A. Koch, Lilja Lahe

	$ \begin{cases} v(CN+\delta(NH); amide II \\ v(C=C) arom. \\ v(C=O) amide I \\ v(CH_2) \\ v(CH) \\ v(NH) \end{cases} $
12	1510 1520 1550 1550 1640 1640 1640 1640 2855 2925 3335 3335
polya there o beffer 3300	1515 1515 1535 1545 1545 1595 1610 1644 1660 1644 1660 2850 2850 3320
10	1505 1515 1515 1516 1530 1550 1642 1642 1642 1660 1642 1660 1660 3320
6	1505 1520 1538 1555 1570 1570 1562 1562 2850 2850 2850 3312 3312
80	1538 1555 1555 1570 1570 1644 1662 2853 2853 2853 2853 3300
7	1535 1555 1570 1570 1570 1570 1644 1665 2850 2925 2925 3300 3300
9	1537 1532 1552 1570 1570 1644 1660 2850 2925 3300 3300
5	1503 1515 1515 1515 1550 1570 1570 1570 1570
4	1505 1517 1517 1536 1550 1570 1570 1570 1570 1560 2850 2850 2850 3300
3	1505 1515 1515 1538 1552 1570 1570 1660 2855 2930 3300 3300
2	$\begin{array}{c} 1505\\ 1517\\ 1517\\ 1572\\ 1572\\ 1570\\ 1570\\ 1665\\ 2855\\ 2855\\ 2855\\ 2855\\ 2855\\ 3300\\ 3300\\ 3300 \end{array}$
Las	1535 1553 1570 1570 1570 1645 1662 2860 2860 3300 3300

From Table 3 it can be seen that infrared spectra of polyamide fibres contain a lot of absorption bands (more than 30) which are difficult to interpret. Absorption bands presented in Table 4 were chosen for detailed characterization. From the Table it can be seen that the infrared spectra of aliphatic, alicyclic and aromatic polyamides contain a number of nearly coinciding absorption bands, such as 3300,

1635, 1645, 1530, 1535, 1465—1473, 1265—1280, 1165—1180, 720—735, 675—690, and 570—580 cm⁻¹. Increase in the number of CH_2 -groups and decrease in that of NH-groups in a linear polymer chain of aliphatic polyamides brings along a weakening of the absorption band of amide V (690 cm⁻¹) and amide VI (570—580 cm⁻¹), so that it is practically impossible to measure these bands in the case of PA 11, PA 12 and alicyclic polyamide.

Table 5 gives the absorption bands which are typical of only aromatic polyamides such as Nomex, Fenilon and Kevlar. The vibration frequencies of the NH-group in the infrared spectra of aromatic polyamide are different in the case of Nomex; Fenilon has 3320, Kevlar 3335 cm⁻¹, the C=C vibration is also different, being 1610 cm⁻¹ in the case of Nomex and Fenilon, 1615, 1410 and 1403 cm⁻¹ in the case of Kevlar. Unlike Nomex and Fenilon, the absorption band 570 cm⁻¹ in the infrared spectrum of Kevlar (see amide band VI) is absent. (NH) amide band V in the infrared spectrum of Kevlar is 665, being 675 and 682 cm⁻¹ in the case of Nomex and Fenilon, respectively.

In conclusion it may be said that aliphatic, alicyclic and aromatic polyamide fibres may be characterized on the basis of their infrared spectra and corresponding absorption bands. More detailed identifi-

Table 4

Type of fibre		Absorption bands of polyamide fibres, cm ⁻¹										
Aliphatic:	68.											
PA 3 PA 6 PA 7 PA 11 PA 11 PA 12 PA 12 PA 66 PA alicycl.	3300 3300 3300 3300 3300 3300 3300 330	$ \begin{array}{r} 1645\\1635\\1635\\1635\\1644\\1644\\1644\\1635\\1645\end{array} $	1535 1535 1536 1530 1537 1535 1535 1538 1538	$ \begin{array}{r} 1465\\1465\\1465\\1470\\1470\\1470\\1470\\1470\\1473\\1465\end{array} $	1275 1265 1270 1278 1280 1270 1270 1270 1270	1180 1170 1166 1170 1160 1160 1161 1180 1165	730 730 725 725 720 720 720 720 720 720	690 689 685 685	580 577 577 577 577			
Aromatic:					_							
PA Nomex PA Fenilon PA Kevlar	3320 3320 3335	$1642 \\ 1644 \\ 1640$	1530 1535 1535	$1470 \\ 1468 \\ 1465$	$1240 \\ 1235 \\ 1240$	1165 1165 1180	720 720 725	675 682 665	570 570			

286

Characterization and identification of polyamide fibres

Type of fibre	Abso	orption tic poly	bands yamide	of fibres	Table Approximate wave numbers (cm ⁻¹) of th vibrations of secondary groups of aliphatic polyamides						
PA Nomex PA Fenilon	1610	980 980	780	ide band	Assignment	wave numb					
PA Kevlar	1615	1403	980	782	Am Am	INAAB, III	Hummel	Kirret et al.			
					I II III IV	(C=0) (C-N)+(NH) (C-N)+(NH) (C=0)	1640 1550 128050 not identified	$1640 \\ 1553 \\ 1280 \dots 65$			
					V VI	(NH) (C=0)	700 600	687 578			

cations are possible but in addition to infrared spectra other analytical indices such as fibre elemental analysis and melting points should also be used.

REFERENCES

- Koch, P.-A. Faserstoff-Tabellen, Polyamid-Fasern. Chemiefasern-Textil-industrie 25/177, 1975, S. 1013—1021, 1093—1101.
 Hughes, J. C., Wheals, B. B., Whitehouse, M. J. Pyrolysis-mass spectrometry of textile fibres. Analyst, 1978, v. 103, May, p. 482—491.
 Kirret, O., Küllik, E. Pyrolyse-Gaschromatographie der Chemiefaserstoffe. Lenzinger Berichte, 1974, Bd. 36, S. 222—228.
 Albracht W. Chemische Faserigrenschaften Vortrag auf dem 5 Intern. Makers
- 4. Albrecht, W. Chemische Fasereigenschaften, Vortrag auf dem 5 Intern. Makromolek. Symposium. Interlaken, Juni 1974 (cited by [¹]). 5. Hummel, D. O. Polymer Spectroscopy. Weinheim, 1974, p. 138.

Academy of Sciences of the Estonian SSR, Institute of Chemistry

Received April 7, 1981

O. KIRRET, P.-A. KOCH, Lilja LAHE

POLÜAMIIDKIUDUDE ISELOOMUSTAMINE NING IDENTIFITSEERIMINE **INFRAPUNASE SPEKTROMEETRIA ABIL**

Artiklis käsitletud alifaatsete, alitsükliliste ja aromaatsete polüamiidkiudude infrapu-naste spektrite absorptsiooniribad on paljudel juhtudel sarnased, kuid neis on ka spetsiifilisi erinevusi, mis võimaldab neid eristada. Kiudude identifitseerimisel tuleb arvesse võtta ka elemendianalüüsi andmeid ja sulamistäppi.

О. КИРРЕТ, П.-А. КОХ, Лилья ЛАХЕ

ХАРАКТЕРИСТИКА И ИДЕНТИФИКАЦИЯ ПОЛИАМИДНЫХ ВОЛОКОН МЕТОДОМ ИК-СПЕКТРОСКОПИИ

В статье рассмотрены полосы поглощения инфракрасных спектров разных полиамидных (алифатических, алициклических и ароматических) волокон. Найдено, что во многих случаях имеются совпадающие полосы поглощения, а наряду с ними и ряд специфических, свойственных отдельным типам волокон. В случае идентификации отдельных типов волокон рекомендуется учитывать данные элементного анализа и температуру плавления.