EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÖIDE KEEMIA. 1980, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 4

https://doi.org/10.3176/chem.1980.4.07

УДК 661.185.223.5

А. КУУСК, Хели ВООРЕ, М. ЭЭК, С. ФАЙНГОЛЬД

ВОДОРАСТВОРИМОСТЬ, ЭМУЛЬГИРУЮЩАЯ И ПЕНООБРАЗУЮЩАЯ СПОСОБНОСТИ ДИАЛКИЛФЕНИЛСУЛЬФОНАТОВ

(Представил О. Эйзен)

В настоящей статье изложены данные о водорастворимости, эмульгирующей и пенообразующей способности некоторых водомаслорастворимых диалкилфенилсульфонатов (ДАФС), синтез и поверхностно-активные свойства которых описаны ранее [^{1, 2}].

Методика анализа

Водорастворимость определяли по оптической плотности растворов ДАФС в зависимости от их концентрации в дистиллированной и жесткой (4,7 *мг-экв/л*) воде на аппарате ФЭК-56М при 22 (\pm 1)°С по методике, примененной в работе [³] (табл. 1).

Растворимость в жесткой воде — основной показатель технологических свойств ДАФС в случае их практического применения. В жесткой воде часть ДАФС оседает вместе с солями жесткости воды в виде нерастворимого осадка, в результате чего эффективная концентрация их в растворе уменьшается. Количество нерастворимого осадка измерялось путем выделения его из растворов, содержащих 0,00265 моль ДАФС на 1 л воды, фильтрацией через мелкопористый фильтр № 16. При вычислениях предполагали, что реакционная способность ионов Ca⁺⁺ и Mg⁺⁺ с ДАФС оди наковая. Количество связанного в осадке ДАФС (X, вес. %) вычисляли по уравнению:

$$X = \frac{200 \cdot B \cdot M_B}{M_B^{oc} \cdot C}$$

где *B* — вес осадка, z/a; *C* — исходное количество ДАФС, z; *Мв* — молекулярный вес ДАФС-Na; *Мв*^{oc} — молекулярный вес Са⁺⁺-ДАФС₂, усредненный пропорционально содержанию ионов Са⁺⁺ и Mg⁺⁺ в воде. Результаты вычисления (средние 2—3 определений) приведены в табл. 2. Погрешность измерения $\pm 6\%$.

Нами изучалось также влияние триполифосфата натрия (50% от ДАФС), используемого в качестве смягчителя воды, на количество связуемого в нерастворенный осадок ДАФС (табл. 2).

Пенообразующую способность определяли на аппарате Росс-Майлса [4] в дистиллированной и в жесткой воде при 22 $(\pm 1)^\circ$. Эмульгирующую способность — методом конденсации водяного пара в белом вазелиновом масле [5]. Эмульгирующую способность индивидуальных первичных *пара*-ДАФС измеряли при их двух концентрациях: первая соответствовала 5 × ККМ₁ (ККМ₁ — критическая концентрация мицеллообразования [2]), вторая (постоянная для всех ДАФС) — 0,00265 моль/л (рис. 1). Эмульгирующую способность вторичных ДАФС установили в диапазоне концентраций 0,01—0,1 вес. % (рис. 2). Недостатком названного метода является неудовлетвори-

Таблица 1

The annotasical the advector	Расти	Растворимость			
Диалкилфенилсульфонат	вес. %	(моль/л) 10-3			
Дистиллиро	ованная вода	Za se			
n-дигептил-ФС-Na ^a n-диоктил-ФС-Na ^a n-динонил-ФС-Na втор. дигептил-ФС-Na втор. дигептил-ФС-Na втор. диоктил-ФС-Na втор. диоктил-ФС-NH ₄ втор. диоктил-ФС-ТЭА ^в ДАФС-1 ^г	$\begin{array}{c} 0,077\\ 0,060\\ 0,050\\ 0,20\\ 0,23\\ 0,15\\ 0,05\\ (0,077) \\ \pi\\ 0,050\\ (0,055) \\ \pi\\ 0,050\\ 0,074\end{array}$	$\begin{array}{c} 2,04\\ 1,48\\ 1,16\\ 5,32\\ 6,12\\ 3,71\\ 1,13\\ (1,78)_{\pi}\\ 1,26\\ (1,38)_{\pi}\\ 0,94\\ 1,69\end{array}$			
Жестк	ая вода				
ДАФС-1 ^г втор. диоктил-ФС-Na	0,025 0,039	0,57 0,96			

Растворимость диалкилфенилсульфонатов в воде

- а на кривых зависимости оптической плотности от концентрации отсутствует резкий перегиб;
- б продукт на основе диалкилбензола, полученный одноступенчатым алкилированием [¹];
 в — сульфонат триэтаноламина;
- o cynoponal ipnoranonamna
- г технический сульфонат [1];
- д результаты кондуктометрического определения.

Таблица 2

Количества диалкилфенилсульфонатов, связанные с солями жесткости воды, в нерастворимом осадке (Концентрация ДАФС — 0,00265 моль/л, жесткость воды — 4,7 мг-экв/л)

Вещество	Вес осадка, г/л	Молекуляр- ный вес ДАФС	Молекуляр- ный вес осадка	Количество связанного ДАФС, %
ЛАФС-1	0.408	436 *	857 44	41.5
пара-лигептил-ФС-Na	0,400	376 53	738 54	45.5
пара-диоктил-ФС-Na	0.736	404.59	794.64	69.8
пара-динонил-ФС-Na	0.906	432.64	850.75	80.3
втор. динонил-ФС-Na втор. динонил-ФС-Na + 50%	0,748	432,64	850,75	66,3
Na ₅ P ₃ O ₁₀	0,124	432,64	850,75	11,0

Молекулярный вес найден, а для остальных веществ вычислен.

тельная репродуцируемость данных и соответственно большая погрешность результатов. Кроме того, в начальной стадии анализа водомаслорастворимых ДАФС (наш случай) образуется, по-видимому, эмульсия типа в/м, так как масло в избытке, а в ходе анализа количество воды увеличивается за счет конденсирующего пара, и концентрация ДАФС снижается. В результате получается эмульсия типа м/в, что неоднократно наблюдалось в наших анализах. Кроме концентрации ДАФС на точку инверсии

Рис. 1. Зависимость эмульгирующей способности (Э), определенной методом конденсации пара, растворов *пара*-ДАФС от длины алкильных цепей в бензоле (N). *1* — концентрация ДАФС 5 × ККМ₁, 2 — концентрация ДАФС 0,00265 моль/л.

влияют температура, структура ДАФС и другие факторы, которые снижают точность определения и должны учитываться при оценке результатов, полученных методом конденсации пара. Поэтому параллельно мы испытали и другую методику определения эмульгирующей способности.

В мензурку объемом 100 мл, снабженную мешалкой и термостатированную при 22° (или 90°), помещали 50 мл раствора ДАФС и 10 мл вазелинового масла, которые перемешивали со скоростью 1200 об/мин в тече-

ние 3 мин. Затем определяли скорость расслоения эмульсии в растворе. Скорость вращения мешалки выбирали таким образом, чтобы при $22(\pm 1)^\circ$ эмульгирующая способность не зависела от скорости вращения мешалки. Этой зависимости не обнаружено при скоростях выше 1000 об/мин.

Рис. 2. Зависимость эмульгирующей способности (Э), определенной методом конденсации пара, растворов вторичных ДАФС и ДАФС-1 ог концентрации. 1 — втор. дигептил-ФС-Na, 2 — втор. диоктил-ФС-Na, 3 — ДАФС-1, 4 — втор. динонил-ФС-Na.

Результаты анализов и их обсуждение

Растворимость изученных ДАФС с длиной алкильных цепей от дигептила до динонила в дистиллированной воде при $22(\pm 1)^{\circ}$ оказалась низкой и составляла 0,05—0,23 вес. % (0,001—0,006 моль/л). Растворимость, однако, превышала ККМ₁ этих соединений в среднем в 3,15 раза, что согласуется с данными А. А. Солоницыной [³] о взаимосвязи ККМ₁ и растворимости анионных поверхностно-активных веществ (табл. 1). В жесткой воде такой закономерности не наблюдалось, и растворимость двух изученных продуктов была значительно выше их ККМ₁. В жесткой воде растворимость уменьшалась. С ростом алкильной цепи в молекуле ДАФС растворимость их уменьшается, причем у вторичных ДАФС она в 1,3—3 раза выше, чем у *пара*-ДАФС.

Замена натриевого катиона на аммониевый или триэтанол-аммониевый увеличивает растворимость втор. диоктил-ФС почти в 3 раза, причем растворимость сульфоната аммония несколько выше (1,32·10⁻³ моль/л) растворимости сульфоната триэтаноламина (0,94·10⁻³ моль/л).

Количество ДАФС, связанных с солями жесткости воды в нерастворимом осадке, увеличивается с ростом молекулярного веса соединений (от 40 до 80%; табл. 2). Добавление к растворам смягчителя воды (0,05 вес. % $Na_5P_3O_{10}$) уменьшает количество осажденного ДАФС (напр., в случае втор. динонил-ФС-Na от 80,3 до 11,0 вес. %; см. табл. 2).

Эмульгирующая способность первичных *пара*-ДАФС, определенная методом конденсации водяного пара при концентрациях 5 × ККМ₁ и 0,00265 *моль/л*, в дистиллированной воде (рис. 1) уменьшается с ростом длины алкильных цепей от дигептила до динонила. Эмульгирующая способность вторичных ДАФС, определенная этим же методом, увеличивается с ростом длины алкильных цепей. Подобное противоречие, по-видимому, объясняется вышеизложенными причинами, которые уменьшают точность применения метода. Эмульгирующая способность вторичения метода. Эмульгирующая способность вторичных ДАФС-1 при концентрациях выше ККМ₁ находится в пределах 16—20%, причем определенная в этих же условиях эмульгирующая способность вторичного додецилфенилсульфоната натрия при концентрации 5 × ККМ₁ (*моль/л*) (1,0815 вес. %) составляла 14,5 (±1,5)%, а при концентрации 0,00265 *моль/л* (0,087 вес. %), т. е. ниже ККМ₁ — 1,0(±1)% (рис. 2).

Эмульгирующая способность, определенная методом конденсации пара, увеличивается в зависимости от типа катиона в случае вторичных диоктилфенилсульфонатов (ДОФС) следующим образом:

ДОФС-Na	<	ДОФС-NH4	<	ДОФС-ТЭА
16%		16,3%		17,8%

Измерение эмульгирующей способности методом перемешивания дает в отнорепродуцируемости шении несколько лучшие результаты — максимальное отклонение данных составляло 3,5% (в среднем 1,5%), а при применении метода конденсации пара — 5,0% (2%) рис. 2). Метод перемешивания значительно

Рис. 3. Зависимость пенообразующей способности от концентрации ДАФС в дистиллированной (непрерывная линия) и жесткой (прерывистая линия) воде при 22(±1)°С. 1 — втор. дигептил-ФС-Na, 2 — ДАФС-1, 3 — втор. диоктил-ФС-Na, 4 — втор. динонил-ФС-Na,

279

проще и менее продолжителен. Однако абсолютные значения эмульгирующей способности, полученные методом перемешивания при 22°, для ДАФС-1 и втор. диоктил-ФС-Na на 5-6% выше, чем результаты, полученные методом конденсации пара.

ДАФС образуют в дистиллированной воде при концентрациях выше ККМ₁ на аппарате Росс-Майлса 220-250 см³ пены, причем пенообразующая способность увеличивается с уменьшением молекулярного веса их (напр., вторичные ДАФС; рис. 3). В жесткой воде пенообразующая способность почти в 7 раз ниже (30 см³), чем в дистиллированной воде (напр., у ДАФС-1).

Пеноустойчивость у индивидуальных вторичных ДАФС в дистиллированной воде при концентрациях выше ККМ1 высокая (0,95—0,97), у ДАФС-1 в жесткой воде — низкая и резко падает после максимума (0,70) при концентрации 0,075 вес. %.

Выводы

1. Растворимость изученных ДАФС в дистиллированной воде при 22(±1)°С находится в пределах 0,05-0,23 вес. % (0,001-0,005 моль/л) и превышает значение ККМ1 в среднем в 3,15 раза. В жесткой воде растворимость у двух изученных ДАФС в 3-3,8 раза ниже, чем в дистиллированной.

2. Эмульгирующая способность ДАФС в отношении вазелинового масла почти на 5% выше эмульгирующей способности втор. додецилфенилсульфоната натрия.

3. Пенообразующая способность и пеноустойчивость ДАФС в жесткой воде низкие, что позволяет применять их в технологических процессах.

ЛИТЕРАТУРА

- с. 261—265.
 Солоницына А. А. Растворимость поверхностно-активных веществ и связь с критической концентрацией мицеллообразования. Сб. тр. Моск. технол. ин-та, 1976, № 28, с. 21—23.
 Неволин Ф. В. Химия и технология синтетических моющих средств, М., 1971,
- c. 398-399.
- 5. Неволин Ф. В. Химия и технология синтетических моющих средств. М., 1964, с. 335-337.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 12/X 1979

Водорастворимость, эмульгирующая и пенообразующая способности...

A. KUUSK, Heli VOORE, M. EEK, S. FAINGOLD

DIALKÜÜLFENÜÜLSULFONAATIDE LAHUSTUVUS VEES, EMULGEERIMIS- JA VAHUMOODUSTAMISVÕIME

Dialküülfenüülsulfonaatide C₇—C₉ kolorimeetriliselt määratud lahustuvus on 22 ± 1 °C juures 0,05—0,23% (karedas vees 3—3,8 korda madalam), emulgeerimisvõime on kõrgem kui naatriumdodetsüülfenüülsulfonaadil ja vahumoodustamisvõime on karedas vees madal (ca 30 cm³, määratud Ross-Mylesi järgi).

A. KUUSK, Heli VOORE, M. EEK, S. FAINGOLD

WATER SOLUBILITY, EMULSIFYING AND FOAMING ABILITY OF DIALKYLPHENYL SULPHONATES

The solubility of dialkylphenyl sulphonates (DAPS) was estimated colorimetrically, being within intervals of 0.05-0.23%. Solubility in hard water was 3-3.8 times lower. Emulsifying ability of DAPS was about 5% higher than that of sodium dodecylphenyl sulphonate. Foaming ability of DAPS in hard water was low (about 30 cm³ by Ross-Myles).

ка остоле задожение од примания истористо запление действие одоблей технических продожан

изоващитра своя блитеров и нарадниралистрана и начесто ере а серетности на серетности странование и различите на серетности се

281