EESTI NŠV TEADUSTE AKADEEMIA TOIMETISED. 29. KÕIDE KEEMIA. 1980, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 4

https://doi.org/10.3176/chem.1980.4.06

УДК 541.123.2

Э. ОТСА, Л. КУДРЯВЦЕВА, О. ЭЙЗЕН

РАВНОВЕСИЕ ЖИДКОСТЬ— ПАР В УГЛЕВОДОРОДНЫХ СИСТЕМАХ, СОДЕРЖАЩИХ ИЗОМЕРНЫЕ *н*-АЛКИНЫ

Среди систем, в которых исследуется равновесие жидкость—пар, большое место занимают углеводородные системы. Интерес к ним обусловлен отчасти тем, что данные, полученные для углеводородов, могут быть в ряде случаев использованы в технических расчетах для систем, содержащих их ближайшие гомологи и изомеры. Возможность такого

Таблица 1

Система	Давление, мм. рт. ст.	Константы урав- нения Вильсона		Константы уравнения (1), °С				
		Λ_{12}	Λ_{21}	а	Ь	с	δ	
Гептан—гептин-1	760	0,8875	0,8831	8,08	-9,46	99,82	0,02	
	600	0,8440	0,9147	8,03	-9,50	92,02	0,03	
	400	0,8824	0,8596	7,95	-9,62	79,60	0,02	
	200	0,7828	0,9294	7,78	-9,70	60,61	0,05	
Гептан—гептин-2	760	1,3652	0,5760	7,11	-21,02	112,39	0,06	
	600	1,5270	0,4732	7,38	-21,37	104,56	0,05	
	400	1,3882	0,5583	7,24	-21,23	91,98	0,06	
	200	1,4198	0,5356	7,29	-21,12	72,61	0,06	
Гептен-1-гептин-1	760	1,1791	0,7413	4,13	-10,40	99,83	0,03	
	600	1,3200	0,6331	4,03	-10,32	92,06	0,01	
	400	1,291/8	0,6541	3,78	-10,07	79,63	0,02	
	200	1,3924	0,5863	3,38	-9,84	60,67	0,01	
Гептен-1-гептин-2	760 600 400 200	1,7499 1,2281 1,3858 1,5021	0,4814 0,8141 0,7216 0,6657	3,10 3,79 3,31 3,22	-22,10 -22,60 -21,99 -21,72	112,50 104,60 92,04 72,69	$0,04 \\ 0,04 \\ 0,02 \\ 0,02 \\ 0,02$	
Гептин-1—толуол	760 600 400 200	1,5804 1,2167 1,0128 1,3299	0,5499 0,8218 1,0142 0,7522	1,84 1,57 0,91 0,58	-12,65 -12,04 -10,80 -9,45	110,64 102,52 89,50 69,53	$0,03 \\ 0,03 \\ 0,02 \\ 0,02$	
Толуол—гептин-2	760	1,2531	0,7984	-0,85	-0,95	112,50	0,04	
	600	1,2502	0,8019	-0,86	-1,25	104,65	0,02	
	400	1,3351	0,7484	-1,22	-1,31	92,05	0,01	
	200	1,3569	0,7369	-1,13	-2,01 •	72,70	0,03	
Циклогексан—гептин-1	760	1,8005	0,3391	9,60	-28,68	99,87	0,04	
	600	1,9516	0,2658	10,17	-29,23	92,14	0,07	
	400	1,9991	0,2433	10,34	-29,27	79,71	0,07	
Циклогексан-гептин-2	760	1,6639	0,5213	11,25	-42,84	112,42	0,07	
	600	1,8776	0,4271	11,22	-42,71	104,64	0,05	
	400	2,0384	0,4036	9,70	-41,01	92,09	0,05	

Константы уравнений, использованных для корреляции экспериментальных данных

распространения равновесных данных определяется взаимодействием углеводородных компонентов смеси, степень и характер которого зависят от структуры их молекул.

В настоящем сообщении интенсивность взаимодействия двух изомеров связи *н*-гептина с некоторыми углеводородами других классов мы сопоставили в форме концентрационной зависимости логарифма отношения коэффициентов активности компонентов γ_i бинарной смеси (рис. 1).

Значения γ_i рассчитывались по уравнению Вильсона [¹]. Константы Λ_{12} и Λ_{21} (табл. 1) определялись по данным о концентрационной зависимости температур кипения бинарных смесей, измеренных при четырех давлениях в полумикроэбуллиометре [²]. Результаты измерения температур кипения *t* (°C) смесей скоррелированы уравнением полинома

$$t = ax_1^2 + bx_1 + c, (1)$$

константы которого приведены в табл. 1. Результаты расчета по этому уравнению воспроизводят экспериментальные данные во всей концент-

рационной области со средней абсолютной ошибкой 0,04°. Точность корреляции характеризуется среднеквадратичной ошибкой

$$\delta = \left[\sum_{i=1}^{n} (t_{\text{pacy}} - t_{\text{эксп}})^2 / (n - m)\right]^{1/2}, \qquad (2)$$

где n — число экспериментальных точек, m — число констант уравнения.

Постоянство составов исследуемых смесей проверялось по результатам измерения показателей преломления, концентрационная зависимость которых была выражена в форме полинома

$$n_0^{20} = n_1 x_1^2 + n_2 x_1 + n_3. \tag{3}$$

Его константы приведены ниже:

Система	n_1	$ $ n_2	$ $ n_3	δ
Гептан—гептин-1	0,0084	-0,0295	1,4087	0,0001
Гептан—гептин-2	0,0069	-0,0412	1,4218	0,0002
Гептен-1—гептин-1	0,0032	-0,0121	1,4088	0,0001
Гептен-1—гептин-2	0,0008	-0,0225	1,4216	0,0001
Гептин-1-толуол	0,0158	-0,1041	1,4969	0,0002
Толуол-гептин-2	0,0174	0,0574	1,4218	0,0004
Циклогексан-гептин-1	0,0188	0,0014	1,4088	0,0002
Циклогексан—гептин-2	0,0039	0,0004	1,4218	0,0003

Точность корреляции определялась по уравнению (2) с заменой t на n_D^{20} .

На рис. 1 изображены найденные зависимости логарифмов отношения коэффициентов активности двух изомеров связи *н*-гептина и ряда углеводородов. У всех исследованных систем наблюдается различная интенсивность взаимодействия компонентов. При этом системы с *н*-гептеном-1, толуолом и циклогексаном различаются и характером отклонения от идеальных свойств; он положителен в системах с *н*-гептином-1 и отрицателен в системах с *н*-гептином-2.

Полученные результаты свидетельствуют о том, что равновесные данные для углеводородных систем, имеющих в своем составе *н*-алкины-1, не могут быть распространены без дальнейшего уточнения на

системы, содержащие другие изомеры связи данного алкина. Сказанное подтверждают результаты исследования равновесия жид- [9 кость—пар в смесях *н*-октана с изомерами *н*-октина (см. рис. 2), полученными ранее [^{3, 4}]. Из этих данных следует, что интенсивность взаимодействия всех изомеров связи *н*-октина с *н*-октаном,

Рис. 2. Концентрационная зависимость логарифмов отношения коэффициентов активности компонентов в системах, образованных *н*-октаном с *н*-октином-1 (), *н*-октином-2 (×), *н*-октином-3 () и *н*-октином-4 ().

3 ENSV TA Toimetised. K 4 1980

Физико-химические показатели веществ

Вещество	Т. кип., °С при	n_{D}^{20}	Константы уравнения Антуана *			
	760 мм рт. ст.		· A	В	C	
Гептан	98,43	1,38774	6,76509	1189,20	207,733	
Гептин-1	99,84	1,40882	6,71424	1142,92	198,307	
Гептин-2	112,47	1,42165	7,02407	1342,14	211,460	
Гептен-1	93,55	1,39989	6,94641	1281,24	231,598	
Голуол	110.64	1,49690	6,93438	1331,80	217,907	
Циклогексан	80,78	1,42626	6,71424	1128,72	213,652	

* Значения констант определены по экспериментальным данным о температурной зависимости давлений паров веществ.

за исключением н-октина-1, можно считать в пределах точности измерений одинаковой.

Все использованные в работе реактивы очищены ректификацией в колонке с щеточным ротором [5] и в препаративном газовом хроматографе «Вырухром П-2». Степень чистоты, определенная в капиллярном газовом хроматографе «Хром-4» (ЧССР), была не ниже 99,96%. Физико-химические показатели использованных веществ приведены в табл. 2.

Авторы благодарят Х. Кирсс за синтез н-алкинов.

ЛИТЕРАТУРА

- Wilson, G. M. Vapor—liquid equilibrium. XI A new expression for the excess free energy of mixing. J. Amer. Soc., 1964, v. 86, N 2, p. 127—130.
 Михкельсон В. Я., Кирсс Х. Х., Тооме М. Ю., Кудрявцева Л. С. Эбуллиометрическая установка для определения температур кипения жид-костей. Ж. физ. химии, 1979, т. 53, № 4, с. 1046—1048.
 Отса Э., Кирьянен И., Кудрявцева Л. Исследование и расчет равно-весня жидкость—пар в системах, содержащих налкины. Изв. АН ЭССР. Хим., 1979, т. 28, № 2, с. 113—121.
 Otsa, E., Kudrjawzewa, L. S., Eisen, O., Piotrowskaja, E. Thermo-dynamische Untersuchungen an n-Alkan/n-Alkin-Systemen. 2. Isobare Dampi-Flüssigkeits-Gleichgewichte. Monatsh. Chem, 1980, B. 111, S. 607—617.
 Михкельсон В., Кыбу А., Эйзен О. Исследование работы колонки с ще-точным ротором. Изв. АН ЭССР. Хим., 1980, т. 29, № 2, с. 109—112.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 18/VI 1980

Таблица 2

E. OTSA, L. KUDRJAVTSEVA, O. EISEN

n-ALKÜÜNI ISOMEERE SISALDAVATE SÜSIVESINIKSÜSTEEMIDE VEDELIKU-AURU TASAKAAL

On uuritud 1- või 2-heptüünist ning mingit teist tüüpi süsivesinikest koosneva binaarse süsteemi lahuste keemistemperatuuri sõltuvust lahuse koostisest jääva rõhu korral. Tule-mused on korreleeritud Wilsoni võrrandiga. Väidetakse, et *n*-heptüüni isomeeride ja teiste süsivesinike vahelise vastastikuse mõju intensiivsus ja iseloom on erinevad.

E. OTSA, L. KUDRJAWZEWA, O. EISEN

DAS GLEICHGEWICHT FLÜSSIGKEIT—DAMPF IN DEN ISOMERE *n*-ALKINE ENTHALTENDEN KOHLENWASSERSTOFFSYSTEMEN

Es wurde die Konzentrationsabhängigkeit der Siedetemperaturen in binären Gemischen, die das n-i-Heptin (i=1, 2) sowie Kohlenwasserstoffe anderer Struktur enthalten, isobar bestimmt. Die Meßergebnisse lassen sich gut mit der Wilson-Gleichung beschreiben. Die das 1-Heptin und das 2-Heptin enthaltenden Systeme unterscheiden sich durch die Intensität der zwischenmolekularen Wechselwirkung und durch die Abweichung vom idealen Verhalten.

> מן הצבעות כי המאינה מאומנית היא האלוקה או ארגו בורגע עבוד אנאסאנגי האינה מין באסיינה (באסון בי צפאורי א יונר למסורים באזיינולאי מחוי באנו איריסאני