EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÕIDE KEEMIA. 1979, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979, № 4

УДК 541.12

Анне ЭЛЬВЕЛЬТ, Э. ОТСА, О. ЭЙЗЕН

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗОМЕРНЫХ и-ОКТИНОВ И и-НОНИНОВ

Anne ELVELT, E. OTSA, O. EISEN. n-OKTÜÜNIDE JA n-NONÜÜNIDE FÜÜSIKALIS-KEEMILI-SED OMADUSED

Anne ELVELT, E. OTSA, O. EISEN. PHYSICO-CHEMICAL PROPERTIES OF n-OCTYNES AND n-NONYNES

Физико-химические характеристики нормальных алкинов изучались до настоящего времени лишь отрывочно, и результаты, полученные разными авторами, весьма различны [^{1–5}]. В рамках систематического изучения физико-химических свойств непредельных углеводородов нами были опубликованы данные для изомерных *н*-децинов [⁶]. В настоящем сообщении приведены результаты исследования важнейших физико-химических характеристик *н*-октинов и *н*-нонинов.

Все индивидуальные соединения были синтезированы по методу, разработанному в [7]. Полученные вещества очищены ректификацией на колонке эффективностью 30 ТТ и методом препаративной газовой хроматографии (ГХ) на приборе Вырухром П-2. Чистота веществ проверялась методом капиллярной ГХ на приборе Chrom 41 (ЧССР). Степень чистоты веществ превышала 99,91% (табл. 1).

Плотности (d_4) и показатели преломления (n_D) изомеров октинов и нонинов для избранных температур измерялись по методикам, изложенным в [8] и [9], соответственно.

Зависимость d_4^t и n_D^t отдельных изомеров алкинов C_8 — C_9 от температуры была выражена с помощью интерполяционного уравнения (1) [6]. Коэффициенты α и β были рассчитаны методом наименьших квадратов на основе полученных нами экспериментальных данных.

По полученным экспериментальным данным для каждого изомера рассчитаны молекулярная рефракция (R_D), интерцепт рефракции (r), изменение плотности и показателя преломления при изменении температуры на 1 °C ($\Delta d/\Delta t$ и $\Delta n/\Delta t$). Результаты эксперимента и расчета приведены в табл. 1 и 2.

Температуры кипения *н*-октинов и *н*-нонинов определялись при постоянном давлении (760, 600, 400, 200 *мм рт. ст.*) в полумикроэбуллиометре, конструкция которого описана в [¹⁰].

Зависимость между температурой кипения и давлением рассчитывалась по уравнению Антуана, константы которого определялись по трем экспериментальным точкам (табл. 3).

Полученные нами данные сравнивались с литературными (табл. 4).

Плотности изомеров и-октинов и и-нонинов

20)+ m dt, при температуре, °С Коэффициенты dt 1 $+\beta(t-20)^{2}$ уравнении $+\alpha(t)$ Степень Вещество чистоты, % 10-4 20 30 50 60 40 Δd Δt $-\alpha \cdot 10^{-4}$ $-\beta \cdot 10^{-7}$ 8,724 8,540 8,756 99,94 $0,7201 \\ 0,7337$ 1-Октин 0,7463 0,7375 8,74 0,48 0,7288 0,7113 0,75080,74300,7251 0,7170 8,54 8,71 2-Октин 99,95 0,7593 0,7422 0,00 99,91 99,96 99,93 З-Октин 0,7517 0,7343 0,7255 1,77 0,72360,73250,74460,73734-Октин 1-Нонин 0,7503 0,7575 0,7417 0,7492 0,73250,74090,75260,74570,71490,72410,73620,72888,936 8,251 8,024 1,77 2,58 8,88 8,34 99,91 99,96 0,7607 0,7541 0,7688 2-Нонин 8,13 3,07 3-Нонин 0,7624 8,39 8.286 3,23 4-Нонин 99,92 0,7614 0,7530 0,7445 0,7359 0,7275 8,455 0,65 8,49

Показатели преломления и-октинов и и-нонинов

Таблица 2

Таблица 1

Вещество	n ^t _D при	температу 25	7pe, °C	$-\frac{\Delta n}{\Delta t} \cdot 10^{-4}$	\vdots Коэффициенты в уравнении n_p^t в уравнении n_p^t	$\begin{array}{c c} & - & \\ &$	<i>Rь</i> прн 20 °С	ř при 20 °С
1-Октин 2-Октин 3-Октин 4-Октин 1-Нонин 2-Нонин 3-Нонин 4-Нонин	1,41606 1,42785 1,42531 1,42465 1,42202 1,43227 1,43021 1,42982	1,41367 1,42546 1,42286 1,42218 1,41970 1,43003 1,42780 1,42743	1,41122 1,42299 1,42033 1,41963 1,41734 1,42773 1,42540 1,42500	4,84 4,86 4,95 5,02 4,68 4,54 4,81 4,82	$\begin{array}{c} 4,700\\ 4,700\\ 4,820\\ 4,860\\ 4,600\\ 4,400\\ 4,825\\ 4,740\end{array}$	$ \begin{array}{r} 14,0\\ 16,0\\ 16,0\\ 8,0\\ -1,4\\ -2,0\\ 8,0 \end{array} $	37,06 37,33 37,51 37,53 41,68 41,93 42,11 42,13	1,0429 1,0482 1,0495 1,0495 1,0433 1,0479 1,0490 1,0491

Таблица 3

Температуры кипения н-алкинов при P = const и константы уравнения Антуана

Вещество	Т. кип. (°С) при давлении, мм рт. ст.					Константы уравнения Антуана		
	760	600	400	200		A	B	C
1-Октин	126.30	118,06	104,88	84,64		6,93838	1352,05	206,916
2-Октин	138,09	129,73	116,45	95,81		7,26672	1588,42	224,074
З-Октин	133,32	124,96	111,81	91,34		7,18200	1520,11	220,096
4-Октин	131,41	123,10	109,90	89,64		6,83680	1292,73	195,367
1-Нонин	150,80	142.26	128,63	107,34		7.53521	1826.16	241,552
2-Нонин	161,37	152,59	138,66	117,40		6.93164	1422,58	189,810
3-Нонин	156,67	148.09	134,29	113,01		7.11999	1537,69	206.059
4-Нонин	155,12	146,58	132,93	111,78		7,23904	1608,75	214,009

Таблица 4

к результатам настоящей работы						
Вещество	Т. кип. при нор- мальном давлении	n ²⁰ _D	d ²⁰ _4			
1-Октин 2-Октин 3-Октин 4-Октин 1-Нонин	126,26 [³] 137,73 [4] 133,22 [³] 131,5 [⁵] 150,7 [4]	1,4160 [⁵] 1,4278 [²] 1,4252 [⁵] 1,4248 [⁵] 1,4200 [⁵]	0,7460 [²] 0,7596 [²] 0,7522 [²] 0,7509 [²] 0,7924 [⁵]			
2-Нонин 3-Нонин 4-Нонин	161,9 [⁴] 157,1 [⁴]	1,4325 [⁵] 1,4305 [⁵] 1,4300 [⁵]	and a man and a man			

Литературные данные для и-алкинов, наиболее близкие

ЛИТЕРАТУРА

- Физико-химические свойства индивидуальных углеводородов. М., 1960.
- Физико-химические свойства индивидуальных углеводородов. Вып. 5. М., 1954 2. (гл. XV).
- Эйзен О., Орав А. Определение температур кипения и давления пара некоторых непредельных углеводородов. Изв. АН ЭССР. Хим. Геол., 1970, т. 19, № 3, 3 c. 202-205.
- Z wolinski, B. I., Wilhoit, R. C. Handbook of vapor pressures and heats of vaporization of hydrocarbons and related compounds. Texas, 1971.
 Q u e i g n e c, R., W o j t k o w i a k, B. Étude par chromatographie en phase gazeuse des associations moléculaires entre les alcynes disubstitués et le nitrate d'argent en solution dans l'éthane-diol-1,2. Bull. Soc. chim. de France, 1070 N U L e 2020 2822
- 1970, N 11, р. 3829—3833. 6. Эльвельт А., Эйзен О. О физико-химических характеристиках йзомерных и-децинов. Изв. АН ЭССР. Хим., 1978, т. 27, № 1, с. 54—56. 7. Asinger, F., Fell, B., Steffan, G. Synthese und physikalische Eigenschaften Ber. 1964.
- der stellungs- und konfigurationsisomeren n-Undecene. Chem. Ber., 1964,
- Вd. 97, N 6, S. 1555—1561. Эйзен О., Эльвельт А., Кудрявцева Л. Исследование физико-химических свойств непредельных углеводородов. Сообщ. 1. Изв. АН ЭССР. Хим. Геол., 1971, т. 20, № 4, с. 287—291. 8.
- Эйзен О., Эльвельт А., Кудрявцева Л. Исследование физико-химических свойств непредельных углеводородов. Сообщ. 2. Изв. АН ЭССР. Хим. Геол., 1972, т. 21, № 1, с. 24—29.
 Міћkelson, V., Kirss, H., Kudrjavzewa, L., Eisen, O. Vapour—li-quid equilibrium T—x measurements by a new semi-micro method. Fluid Phase Equilibria, 1977/1978, N 1, p. 201—209.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 22/1 1979

289