LÜHITEATEID * КРАТКИЕ СООБШЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÕIDE KEEMIA. 1979, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979. № 4

УЛК 665.7.032.57: 66.094.3: 543.42

Р. ВЕСКИ, М. КОЭЛЬ

СПЕКРОСКОПИЯ ПМР В ИССЛЕДОВАНИЯХ продуктов окислительной деструкции сапропелитов

R. VESKI, M. KOEL. H-TMR-SPEKTROSKOOPIA KASUTAMINE SAPROPELIITIDE OKSÜDATSIOO-NIPRODUKTIDE UURIMISEL

R. VESKI, M. KOEL. APPLICATION OF THE 'H NMR SPECTROSCOPY IN THE STRUCTURE ANALYSIS OF OXIDATION PRODUCTS OF SAPROPELITES

Представлена О. Эйзеном

В исследованиях структуры керогена горючих сланцев и других сапропелитов широко применяются деструктивные методы анализа [1]. Лишь более низкомолекулярные продукты деструкции идентифицируются на молекулярном уровне. При окислительной деструкции, особенно при мягкой ступенчатой, наряду с низкомолекулярными продуктами образуются в значительных количествах высокомолекулярные — более близкие к исходной структуре керогена, но труднее поддающиеся анализу. Продукты термической деструкции каустобиолитов, битумоиды последних, а также нефть анализируются с помощью спектроскопии ЯМР уже сравнительно продолжительное время [2-5]. Но только совсем недавно спектроскопией ЯМР стали анализироваться продукты окислительной деструкции [6, 7]. Их спектры отличаются от спектров продуктов термиче-

Кислота или ее соль	Раство- ритель	CH3-	—(CH ₂)—	-(CH ₂) ^β -	—(CH₂)∝—
Пеларгоновая CH ₃ - (CH ₂) 7-COOH CH ₃ - (CH ₂) 7-COOH CH ₃ - (CH ₂) 7-COOK	CCl ₄ (CD ₃) ₂ CO D ₂ O	0,90 0,90 0,90	1,28 1,28 1,28	1,60 1,65 трудно опр.	2,30 2,20 2,13
Глутаровая					
HOOC- (CH ₂) ₃ -COOH HOOC- (CH ₂) ₃ -COOH NaOOC- (CH ₂) ₃ -COONa	$(CD_3)_2CO$ D_2O D_2O	Ξ	Ξ	1,90 т* 1,81 1,63	2,36 к** 2,33 2,00
Себациновая					
HOOC- (CH ₂) ₈ -COOH KOOC- (CH ₂) ₈ -COOK	(CD ₃) ₂ CO D ₂ O		1,32 1,30	трудно опр. трудно опр.	2,25 2,15
* т — триплет. ** к — квартет					

Химические сдвиги индивидуальных карбоновых кислот и их солей (в ж. д. от ТМС)

285

ской деструкции в первую очередь сигналами протонов в α-положениях по отношению к карбоксильным группам.

Из-за плохой растворимости продуктов окислительной деструкции в применяемом обычно растворителе CCl₄ для продуктов перманганатного окисления грин-риверского сланца был применен в качестве растворителя пиридин-d7 [6], для продуктов азотнокислого окисления керогена диктионемового сланца — D₂O [7]. Применение D₂O в качестве растворителя требует предварительной нейтрализации продуктов окислительной деструкции водным раствором щелочи. Вода затем выпаривается, остаток высушивается в вакууме и растворяется в D₂O. В качестве внутреннего стандарта с некоторым приближением можно использовать сигнал НОО (зависит от температуры) или DCC [6]. Для пересчета сигналов протонов соединений, снятых в D2O, относительно ТМС был применен диоксан (сигнал 3,56 м. д.), растворимый как в D₂O, так и в органических растворителях. Снятие спектров (см. таблицу) индивидуальных кислот в органических растворителях и в D2O и солей кислот в D2O показало, что в D₂O наблюдается смещение сигналов алифатических протонов в сильнопольную область, причем для солей в большей степени, чем для кислот. Эти сдвиги значительнее для α-протонов карбоксильных групп.

Недостатком D₂O как растворителя являются сравнительно мощные сигналы HDO и полос вращения в середине спектра. Наличие сигналов исследуемых веществ в центральной части спектра контролируется параллельным снятием спектров в ацетоне-d₆ или метаноле-d₄, являющихся сравнительно хорошими растворителями для продуктов азотнокислотного окисления сапропелитов. При использовании только ацетона-d₆ в качестве растворителя возникают определенные трудности с идентификацией сигналов протонов карбоксильных групп, которые при увеличении концентрации исследуемого вещества сдвигаются в сторону слабого поля. Это указывает на некоторую связь между протонами карбоксильной группы и растворителем. Сигналы протонов карбоксильных групп продуктов окислительной деструкции при снятии в ацетоне-d₆ дают иногда сигналы в диапазоне сигналов для ароматических протонов. Спектр этого же продукта, но метилированного диазометаном, позволяет отличить эти сигналы от ароматических (рисунок). В спектре метилированного продукта появляется острый пик сигнала протонов групп — СООСН₃ со сдвигом 3,75 м. д.

Положительная роль метилирования продуктов окислительной деструкции заключается в увеличении их растворимости в четыреххлористом углероде.

Анализ спектров ПМР продуктов окислительной деструкции керогена целого ряда горючих сланцев и богхеда показал, что удельный вес отдельных алифатических протонов (метильных, метиленовых, соседних к карбоксильным группам и др.) зависит как от природы сапропелита, так и от глубины окисления. Спектры ПМР позволяют получить дополнительную информацию о характерных структурных элементах продуктов окислительной деструкции, в том числе высокомолекулярных. На основе спектров ПМР можно группировать сланцы по признаку содержания или отсутствия ароматических протонов в продуктах их окислительной деструкции.

ЛИТЕРАТУРА

- Клесмент И. Р. Новейшие достижения в области изучения органического вещества горючих сланцев. Химия тв. топлива, 1978, № 4, с. 36-41.
 Вгоwn, J. К., Ladner, W. R., Sheppard, N. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy. I The measurement and interpretation of the spectra. Fuel, 1960, v. 39, N 1, p. 79-86.
 Schweighardt, F. K., Retcofsky, H. L., Friedel, R. A. Chromatographic and n. m. r. analysis of coal liquefaction products. Fuel, 1976, v. 55, N 4, p. 313-317.
 Clutter, D. R., Petrakis, L., Stenger, R. L., Jensen, R. K. Nuclear magnetic resonance spectrometry of petroleum fractions. Analyt. Chem., 1972,
- magnetic resonance spectrometry of petroleum fractions. Analyt. Chem., 1972, v. 44, N 8, p. 1395—1405.
 5. Лилле Ю., Пехк Т., Пурре Т., Биттер Л. Исследование структуры тяжелой
- сланцевой смолы методом ЯМР-спектроскопии. Изв. АН ЭССР. Хим. Геол.,
- 1973, T. 22, № 1, c. 17-25.
 6. Young, D. K., Yen, T. F. The nature of straight-chain aliphatic structures in Green River kerogen. Geochim. Cosmochim. Acta, 1977, v. 41, N 10, p. 1411-1417.
- 7. Вески Р., Филимонова Н., Бондарь Е., Лумисте Т., Фомина А. Исследование органического вещества диктионемового сланца окислением азотной кислотой. — Изв. АН ЭССР. Хим., 1979, т. 28, № 1, с. 32—39.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 19/XII 1978