EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÕIDE KEEMIA. 1979, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979, № 4

https://doi.org/10.3176/chem.1979.4.05

УДК 678.675 : 678 : 66.095.3

А. КОНГАС, О. КИРРЕТ, Г. РАЯЛО

СИНТЕЗ ПОЛИАМИДОВ ИЗ ДИМЕТИЛОВЫХ ЭФИРОВ ДИКАРБОНОВЫХ КИСЛОТ

В настоящее время наиболее распространенным методом получения найлона 66 и найлона 610 является поликонденсация адипиновой и себациновой кислот гексаметилендиамином (ГМДА) с предварительным получением солей названных кислот.

Технологически выгодно получать полиамиды (ПА) прямо из диметиловых эфиров дикарбоновых кислот (ДЭК) и ГМДА, исключая стадии гидролиза диэфиров и получения солей с ГМДА. Сырьевая база для подобного производства в СССР уже имеется или может быть легко создана при организации переработки отходов имеющихся производств. При выработке капролактама ежегодно остается много неиспользованных отходов в виде смеси дикарбоновых кислот С₄—С₆, разделение которых легко осуществимо после перевода кислот в соответствующие диметиловые эфиры.

В настоящее время наиболее широко применяется метод получения высших дикарбоновых кислот, заключающийся в окислении углеводородов HNO₃, в результате чего неизбежно получается и смесь низших дикарбоновых кислот, которые можно разделить в виде их диметиловых эфиров [¹]. Вышеприведенное указывает на целесообразность синтеза ПА из ДЭК.

Известны способы получения ПА из диметиловых эфиров и ГМДА [^{2, 3}]. Для поддержания постоянного молярного соотношения мономеров предлагается проводить поликонденсацию в присутствии воды [⁴], но это затрудняет соблюдение температурного режима и тем самым снижает скорость реакции. Все названные методы синтеза ПА до сих пор не нашли практического применения.

Нами разработан способ синтеза высокомолекулярных ПА из ДЭК и ГМДА под действием катализаторов типа Ti(OR)₄, где R — этил, пропил, бутил, изобутил [⁵]. Названный способ позволяет проводить поликонденсацию в одну стадию, т. е. исключает предварительный гидролиз диэфиров, выделение кислот и получение солей последних с диамином. Ti(OR)₄ особенно значительно ускоряет первую стадию поликонденсации (процесс образования низкомолекулярных олигомеров), и при этом не наблюдается получения нерасплавимого преполимера, что иногда случается при проведении реакции в расплаве без катализатора и воды (см. таблицу).

О степени поликонденсации можно судить по изменению содержания метоксильных групп в ПА. Поскольку до сих пор нет общепринятой методики определения концевых метоксильных групп в ПА, то нами разработано газохроматографическое определение их в ПА, которое применимо и для анализа полиэфиров [⁶].

А. Конгас, О. Киррет, Г. Раяло

Способ поликон- денсации	Степень превращения диэфиров (%) при 200 °С после:					Удельная вяз-
	5 мин	15 мин	30 мин	60 мин	180 мин	(η)
В присутствии 0,1% ка-	66,3	82,0	83,5	89,1	91,9	после 9—12 ч 0.8—1.1
В присутствии 2 молей воды	39,4	54,4	68,7	78,5	83,5	после 12—13 ч 0.6—1.0
Без катализатора и воды	27,1	53,2	60,6	,70,1	81,0	после 12—13 <i>ч</i> 0,5—0,9

Синтез высокомолекулярных ПА. В колбу, снабженную обратным холодильником и мешалкой, загружаются ГМДА и ДЭК в мольном соотношении 1,03:1 и Ti(OR)₄ в количестве 0,1—0,5% от веса мономеров. Смесь мономеров в течение 1—2 и нагревают от 200° до 270 °C, затем для облегчения удаления из реакции побочных продуктов закрывают воду в холодильнике и при этой же температуре и непрерывном перемешивании продолжают поликонденсацию в течение 6 и. Удельная вязкость 0,5%-ного раствора ПА в трикрезоле 0,7. Для увеличения молекулярной массы ПА подвергают дополнительной поликонденсации при 270° и остаточном давлении 5 *мм рт. ст.* в течение 2—4 и. После этого удельная вязкость ПА поднимается до 0,8—1,1.

Кинетические данные поликонденсации с Ti (OR) 4 рассчитывались только в течение 30 *мин* от начала реакции при температуре 200°, поскольку в дальнейшем при проведении процесса в расплаве происходит самопроизвольное ускорение реакции путем ориентации мономеров олигомерными цепями [⁷].

По полученным экспериментальным данным, предполагается следующий механизм реакции. Соединения типа Ti(OR)4 образуют неустойчивые комплексы с ДЭК [⁸]:

$$C - R'' - C = O \dots Ti \dots O = C - R'' - C''$$

Возникший у атома С заряд δ⁺ облегчает нуклеофильную атаку этого атома аминогруппой. Элементарный акт катализа поликонденсации можно представить так:

$$\begin{array}{c} 0 \dots Ti(OR)_{4} \dots & {}^{\Theta} 0 \dots Ti(OR)_{4} \\ -F - C + H_{2}N - F' - - - F - C - H_{2}^{\Theta}N - F' - - \\ 0 CH_{3} \end{array}$$

В уравнении реакции символами *F* и *F*′ обозначены фрагменты цепи мономера или полимера, обусловливающие реакционную способность функциональных групп – СООСН₃ и – NH₂.

Обозначив CH₃OH как X, —COOCH₃ как Y, NH₂ как Z, Ti (OR)₄ как K и не учитывая обратных реакций, кроме образования комплекса катализатора с ДЭК, можно записать: Синтез полиамидов из диметиловых эфиров...

$$Y+K \xrightarrow{k_{1}} YK$$

$$Z+YK \xrightarrow{k_{3}} YZK_{1}$$

$$YZK_{1} \xrightarrow{k_{4}} YZK_{2}+H^{+}$$

$$YZK_{2}^{-} \xrightarrow{k_{5}} K+CH_{3}O^{-}+YZ$$

$$CH_{3}O^{-}+H^{+} \xrightarrow{k_{6}} X$$

$$\frac{\delta[YZK_{2}^{-}]}{\delta t} = -k_{5}[YZK_{2}^{-}]+k_{4}[YZK_{1}]$$

$$\frac{\delta[YZK_{1}]}{\delta t} = k_{3}[Z][YK] - k_{4}[YZK_{1}]$$

$$\frac{\delta[YK]}{\delta t} = k_{1}[Y][K] - k_{2}[YK] - k_{3}[Z][YK]$$

$$\frac{\delta[K]}{\delta t} = -k_{1}[Y][K] + k_{2}[YK] + k_{5}[YZK_{2}^{-}]$$

$$\frac{\delta[Y]}{\delta t} = -k_{1}[Y][K] + k_{2}[YK]$$

$$\frac{\delta[Z]}{\delta t} = -k_{3}[Z][YK]$$

После преобразования вышеприведенных уравнений, учитывая также то, что в реакционной среде [Y]=[Z] и концентрация катализатора не изменяется (т. е. $\delta[K]/\delta t = 0$), получаем зависимость расхода метоксильных групп от скорости возникновения и разложения комплекса Ti(OR)4 с диэфиром:

δ[Y]	$k_1[Y]^2$	
δt	$1 - k_2[Y]$,

где [Y] — концентрация метоксильных групп, моль/л, t — время, мин. По экспериментальным данным определены максимально соответствующие результатам опытов числовые значения кинетических констант k1 и k2. Поиск наиболее подходящих значений констант проводился минимизацией суммы квадратных отклонений расчетных данных от экспериментальных [9]. Вычисления осуществлялись с помощью ЭВМ. Числовые значения констант с установленными с 95%-ной вероятностью пределами достоверности: $k_1 = 0,0783 \pm 0,0035$ и $k_2 = 0,527 \pm 0,039$.

ЛИТЕРАТУРА

Кулаков В. Н. и др. Мономеры для синтетических волокон. Ч. 1. Тула, 1971.
 Пат. ФРГ № 899553, 1953. — РЖХ, 1955, 17601 П.

Яп. пат. № 1842, 1960. — РЖХ, 1962, 14 П.
 Смолян З. С., Матвеева Т. Н. Авт. свид. СССР № 138367. — Бюл. изобретений, 1961, № 10.

- Конгас А. А., Киррет О. Г., Когерман А. Р., Мянник А. Н. Авт. свид. СССР № 487093. Бюл. изобретений, 1975, № 37.
 Киррет О. Г., Когерман А. Р., Яагус М., Конгас А. А. Микроэлементар-ный состав некоторых синтетических полимеров и волокон. Изв. АН ЭССР.
- Хим. Геол., 1974, т. 23, № 1, с. 137—140. 7. Жубанов Б. А. Успехи в области равновесной поликонденсации. Высокомол. соед., 1978, т. 20, № 4, с. 720—741. 8. Нуделман З. Н., Новиков А. С. Реакция структурирования полидиметил-
- силоксанов при холодной вулканизации полисилоксановых каучуков. Каучук и резина, 1960, № 5, с. 17—21.
- 9. Тяхт Р. Э., Раяло Г. Ю. Пакет программ для определения констант уравнений химической кинетики. Таллин, 1978.

Инститит химии Академии наук Эстонской ССР Поступила в редакцию 23/1 1979

A. KONGAS, O. KIRRET, G. RAJALO

POLÜAMIIDIDE SÜNTEES DIKARBOKSÜÜLHAPETE DIMETÜÜLESTRITEST

On näidatud, et Ti(OR)4 tüüpi ühendid katalüüsivad dikarboksüülhapete dimetüül-estrite polükondensatsiooni heksametüleendiamiiniga, esitatud katalüüsi mehhanism ja monede kineetiliste konstantide väärtused.

A. KONGAS, O. KIRRET, G. RAJALO

POLYAMIDE SYNTHESIS FROM DICARBOXYLIC ACID DIMETHYL ESTERS

Ti(OR)4-type catalysts were found to accelerate the polycondensation of dicarboxylic acid diesters with hexamethylenediamine. Reaction mechanism is suggested, and some kinetic constants are computed.