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Abstract. A hydrocyclone electrolytic cell was applied for the purification of electroplating
rinsewater. The kinetics of both the oxidation of cyanides and the deposition of copper was

investigated. The process rate is influenced by diffusional resistance. An addition of sodium

sulphate somewhat decreases the process rate and the current density, but significantly reduces

energy consumption.
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INTRODUCTION

Electrochemical technology is being successfully used today in many

pollutant removal and recycling processes thanks to its selectivity, lower

processing temperature and cost, a small amount of waste by-products,
and amenability to automation [l-3]. The purification and recycling of

electroplating waste waters is an area where electrochemistry is playing an

important role.

The waste waters coming from electroplating processes contain very
toxic complex cyanides of copper, zinc, iron, and other metals, as well as

sodium cyanide. The purification of this kind of wastes has to solve two

main problems: the oxidation of cyanides to less toxic compounds and the

recycling of metals. Both of them can be fulfilled simultaneously by the
use of the electrochemical method.

The rate of an electrochemical process depends in addition to electrical

parameters on the diffusional mass transfer between the bulk of the liquid
phase and the electrode surface. The diffusional resistance can be

significantly reduced by the use of a turbulent swirling flow within the
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cell [4]. Such a possibility is offered by a hydrocyclone cell (HCC) with a

helical flow of the electrolyte between the electrodes. An electrochemical
HCC has been developed and used for the electrodeposition of copper and
silver from dilute solutions by Dhamo et al. [s].

In the present study an HCC was used for the purification of

electroplating rinsewater. Both the electrooxidation of cyanides and the

recovery of copper were investigated.

EXPERIMENTAL

The general arrangement of the experimental equipment is shown in

Fig. 1. Experiments were carried out at batch recycle mode of operation
using an electrochemical HCC, a well-stirred electrolyte tank (V= 2.9 dm?),
and a rotary pump for electrolyte recirculation. The flow rate of the

circulating electrolyte was regulated in a range from 10 to 40 cm’/s by
means of a valve. The stainless steel wall of the HCC served as cathode.

The 38 mm diameter of the graphite anode was situated at the centre of the

hydrocyclone with a 50 mm inlet diameter. The anode, equipped with

helical wings on the surface, was surrounded by a tube of cation-exchange
membrane MKK (VNIIKhT) 44 mm in diameter and 50 mm in height,

Fig. 1. Scheme of the experimental equipment. /, anode; 2, membrane; 3, helical wing; 4, stirrer;
5, temperature regulation; 6, tank; 7, rotary pump; 8, valves; 9, Teflon gaskets; 10, hydrocyclone

wall (cathode); /1, flowmeter; /2, scheme of the electrolyte flow.
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acting simultaneously as the vortex finder of the hydrocyclone and the cell

diaphragm. The electrolyte entered tangentially the top of the cathodic

compartment between the cyclone wall and the membrane, flew at first

helically downward and then upward through the anodic compartment,
swirling round the anode (Fig. 1). The apex valve of the cyclone was kept
closed, so the whole electrolyte flow was issued from the HCC and

recirculated. The process time of batch experiments was varied from 1 to

10 h. During the experiment the current was kept constant at 1.4 A. The

electrolyte temperature was 20-30°C.

Electroplating rinsewater containing 290 g/m? copper, 20 g/m? iron,
25 g/m? sodium carbonate, and 220 g/l cyanide with pH 9.4 was used as

electrolyte. In part of the experiments 35.5 g (0.25 mol) sodium sulphate
was added to 1 dm? electrolyte to increase electroconductivity. The

samples for analysis were taken from the electrolyte at the beginning and

at the end of the process.
The total cyanide concentration after distillation was determined by

argentometric titration [6,4500-CN C, D], the content of cyanides
amenable to chlorination (‘toxic’ cyanides) by Bucksteeg's method

binding the hexacyanoferrate ions with zinc acetate before distillation

[7, p. 243]. Copper was determined by complexometric titration with
murexide [B, pp. 62-63] and iron photometrically by means of sulpho-
salicylic acid [B, pp. 75-77], both after decomposing the cyanides.

RESULTS AND DISCUSSION

The following assumptions may be made for the description of the

experimental process:

(1) The spiral movement of the electrolyte through the cathodic and
anodic compartments of the HCC may be approximated to plug flow.

(2) The electrolyte reservoir has a constant volume and can be regarded
as a perfectly stirred tank.

(3) The volume of the HCC is very small compared with that of the

tank, therefore the change in the concentrations with time is very small as

compared to the change in the length of the HCC.

The concentrations of cyanides and copper in the electrolyte vs. the

process time at a current density 6.4 A/dm? are shown in Fig. 2a. All these

experiments were performed with the above-described electroplating
rinsewater. In Fig. 2b analogous concentration-time curves for the same

rinsewater with an addition of 0.25 mol/dm? sodium sulphate are shown.
In both cases the oxidation of cyanides and the recovery of copper run

rapidly in the beginning of the process, but are decelerated at a low
concentration of reagents. A comparison ofFig. 2a and 2b shows that the
addition of sodium sulphate somewhat decreases both the cyanide
oxidation and copper deposition rates. The content of ‘untoxic’ cyanides
(mainly hexacyanoferrate(lll)) remains more or less unchanged.
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The process rate can be influenced by the rates of both the diffusional

mass transfer and the chemical reaction. If the concentrations of the

cyanides and copper are very low and hence the process is controlled by
mass transfer, we can, according to the above-presented assumptions
(1)-(3), describe the process as [s]

~dC (1) /dt = T [l—exp (-K,/Q) 1 C(1) .

Integration of Eq. (1) gives a linear plot of In (C(0)/C(¥)) against £. From

the slope of the straight line we can calculate the volumetric mass transfer
coefficient as

K, = 20RLK = -Qln[l+l4¢ 'ln(C(£)/C(0))]1,
where K is the mass transfer coefficient, m/s; R is the radius and L the

length of the membrane, m; Q is the volumetric flow rate, m%/s; 1
p

18 the

mean residence time of the electrolyte in the tank, s; £ is the process

time, s; C(0) and C(f) are the initial and end concentrations of the reacting
component, respectively.

In Fig. 3 the linear plot In (C(0)/C(¢)) vs. t and our experimental data

obtained at constant current and electrolyte flows are shown. The

experimental data points are close on the linear plot, demonstrating the

adequacy of the above presumptions and Eq. (1).

Fig. 2. Dependence ofcopper (J), total cyanide (2), and ‘toxic’ cyanide (3) concentration on time.

Electroplating rinsewater (a) and rinsewater with Na»SO4 addition (b).

(1)

(2)
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In case of a diffusion controlled isothermal electrochemical process the

mass transfer coefficient depends on both the electrolyte flow rate and the

cell voltage. In our experiments the current was kept constant. The cell

voltage did not vary much. So it was possible to observe the influence of

the electrolyte flow rate on the process rate.

In Fig. 4 the linear plot of InK vs. InQ for cyanide oxidation is

presented. The mass transfer coefficient values were calculated from the

Fig. 3. Dependence ofcyanide concentration ratio on time. Q =22+2 cm’s.

Fig. 4. Dependence of the mass transfer coefficient, K, on the flowrate, , at the oxidation ofcyanides.
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experimental data using Eq. (2). As can be seen, the mass transfer

coefficient depends on the electrolyte flowrate, demonstrating the fact that

the process rate is influenced by the diffusional resistance in the laminar

electrolyte layer. The slope of the linear plot corresponds to the following
expression:

0.5
K-O”

and is less steep than that obtained by some other authors [4,5] at

diffusion-limited processes in swirling flow cells.

Figure 5 displays the current efficiency of cyanide oxidation depending
on the process time in case of both the preliminary electroplating
rinsewater and the rinsewater with a sodium sulphate addition. As can be

seen, in case of a weak solution the current efficiency is relatively low and

decreases in time, i.e. with decreasing cyanide concentration. The low

value of the current efficiency corresponds to the oxidation of cyanide to

cyanate only, the further oxidation of cyanate and other electrochemical

reactions are not taken into account. The addition of sodium sulphate as a

supporting electrolyte somewhat decreases the process rate (cf. above) as

well as the current efficiency (faradaic), but simultaneously reduces

significantly (2-3-fold) the energy consumption of the process in

connection with increasing the electroconductivity of the electrolyte and
thus decreasing the cell voltage.

Fig. 5. Dependence of the current efficiency on time at the oxidation ofcyanides. /, electroplating
rinsewater; 2, rinsewater with Na,SO4 addition.

(3)
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GALVAANIKA HEITVEE PUHASTAMINE HÜDROTSÜKLONI
TÜÜPI ELEKTROLÜÜSERIGA

Guido RAJALO, Tamila PETROVSKAIJA, Maia GLUSKO,
Viktor AHELIK

Hüdrotsükloni tüüpi diafragmaga elektrolüüserit on rakendatud gal-
vaanika heitvee puhastamiseks. Seejuures on uuritud nii tsüanlidide oksü-

datsiooni kui ka vase eraldumise kineetikat. Protsessi üldist kiirust

limiteerib elektroliiiidi laminaarse piirikihi difusioonne takistus. Kande-

elektroliiiidi (Na,SO,) lisand aeglustab veidi protsessi kiirust, kuid samal

ajal vihendab oluliselt iildist energiakulu.
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