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Abstract. Anionotropic isomerization of the enynic block of (Z,E)-2-octen-4-yn-1-ol in super
basic media MNH(CH,),NH,/H,N(CH,),NH, (M = Li, Na) and the following alkylation in situ of
the metallated product was studied. The influence of the strength of the super base and the

structure of the alkylating agent to the yield and isomeric composition of products were

determined.
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INTRODUCTION

Conjugated enynic compounds are very useful building blocks for the

synthesis of biologically active compounds, particularly for the

preparation of pheromones, eicosanoides, and vitamins [l, 2]. Several
classical methods for the synthesis of 2-alken-4-yn-1-ols have been
described [3, 4], but the preparation of longer enynols with a terminal

enynic block has remained a difficult problem so far.

The anionotropic isomerization of internal triple bond(s) of alkynes
[s], alkynols [6, 7], tertiary alkynyl amines [B], conjugated alkadiynes,
and hydroxyalkadiynes [9] to the terminal position in super bases

[MNH(CH,),NH,/H,N(CH,),NH, (M=Li,Na,K;n=2,3)] is well

documented. The products of isomerization are in metallated form in the

reaction mixture, which offers a good possibility for these alkylations.
Remizova and co-workers have tried to alkylate carbanions of terminal

conjugated diynes in the reaction mixture with @®-protected bromo-
alkanoles, but the alkylation gave only 30-50% of the corresponding
products [B-11]. There are no data available on the anionotropic
isomerization of conjugated or nonconjugated enynic alcohols or other
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derivatives. The alkylation of the metal derivative of the triple bond is

well known [3], but according to our information the alkylation of

carbanions of enynols in ethylenediamine in the presence of a large
excess of a very strong base (pK, = 38 [l2]) has not yet been described.

In the present work we have investigated the possibilities of the

isomerization of (Z,E)-2-octen-4-yn-1-ol and the alkylation in situ of the

metallated derivative of (Z,E)-5-octen-7-yn-01.

EXPERIMENTAL

Infrared spectra were recorded on a Specord MB2 (Carl Zeiss, Jena)
spectrometer. The 'H and *C NMR spectra were measured with a

Bruker AC2OOP spectrometer at 200 MHz and 50 MHz, respectively.
Chemical shifts are reported relative to TMS in CDCI;. GLC analyses
were performed on a Fractovap 4160 series (Carlo Erba Strumentazione)
capillary gas chromatograph and Chrom 5 (Laboratorni Przistroje,
Praha) equipped with FID, using fused silica capillary columns OV-101

25mx 0.2 mm, Nordibond NB 20M 25mXx0.32 mm, and glass
column 2.5 m X 3 mm packed with 5% Carbowax 20M on Chromosorb

W AW-DMCS 80-100 mesh.

All experiments were carried out in an atmosphere of dry, CO, and O,
free argon. Ethylenediamine (EDA) was distilled several times from

sodium wire and kept over molecular sieves 4A.

(Z,E)-2-octen-4-yn-1-ol was synthesized as described earlier [4]. The

product was prepared as a mixture ofZ- and E-isomers (1:1). Yield 46%.
In isomerization the mixture of Z/E isomers 1:2 was used, which was

obtained by careful rectification.

BC NMR of Z-isomer & = 13.5 (C-8); 21.6 (C-6); 22.5 (C-7); 60.7 (C-1);
- 77.1 (C-4); 90.8 (C-5); 111.2 (C-3); 140.9

(C-2).
of E-isomer ö = 13.5 (C-8); 21.7 (C-6); 22.5 (C-7); 62.6 (C-1);

79.3 (C-4); 96.4 (C-5); 110.8 (C-3); 140.8

(C-2).

IR (cm™): 3304 (—OH); 1012 (—C—O); 2221 (C=C); 3031 (=CH—);
1681, 958 (E C=C), 1639, 738 (Z C=C).

Typical isomerization procedure
Lithium ethylenediamide (LiEDA) and NaEDA were prepared in EDA

(5 ml) from Li grains (63 mg, 9 mmol) and NaNH, (0.39 g, 7.4 mmol),
respectively, by stirring on a magnetic stirrer at room temperature for
1.5 h. Then (Z,E)-2-octen-4-yn-1-ol (186 mg, 1.5 mmol) was injected to

the solution of a super base. The reaction was observed by GLC. Results
of the isomerization are given in Table 1.
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For the separation of the product the reaction mixture was poured into

ice water, extracted with diethyl ether three times, acidified with diluted

HCI to pH 2, washed with brine to neutral, dried on MgSQO,, the solvent

was evaporated, and the residue purified by column chromatography on

silica (eluent hexane/diethyl ether 1:1). The yield was 128 mg of pure

(Z,E)-5-octen-7-yn-1-01.

PC NMR of Z-isomer & = 24.9 (C-3); 29.9 (C-4); 32.1 (C-2); 62.5

(C-1); 75.8 (C-8); 82.5 (C-7); 108.6 (C-6);
145.5 (C-5).

of E-isomer & = 24.8 (C-3); 32.1 (C-2); 32.7 (C-4); 62.6

(C-1); 76.5 (C-8); 81.4 (C-7); 109.0 (C-6);
146.3 (C-5).

IR (cm’): 3400 (—OH); 1060 (—C—O); 3290 (=C—H); 2100, 640

(C=C); 3020 (=CH—); 1680, 960 (E C=C), 1641, 738

(Z CL).

Alkylation procedure
After isomerization of (Z,E)-2-octen-4-yn-1-ol with six eguivalents of

LiEDA at 40°C for 20-30 min the reaction mixture was cooled to 5°C
and the alkylating agent (six eguivalents) was added dropwise. The
reaction was observed by GLC. Yields of alkylations were calculated
from GLC data and are presented in Table 2.

LiEDA/EDA 0.3 5-10 68:32 94

LiIEDA/EDA 0.5 20 78:22 93

LiEDA/EDA 0.5 50 67:33 95

LiEDA/EDA 0.5 70 68:32 96

LiEDA/EDA: THF (1:1) 0.5 20 68:32 92

LiEDA/EDA: THF (1:1) 0.5 50 69:31 94

NaEDA/EDA 0.25 20 56:44 95

0.5 42:58

0.9 26:74 97

NaEDA/EDA 0.25 50 65:35 98

1 23:77

NaEDA/EDA: THF (1:1) 0.16 20 78:22 90

0.3 75:25 94

0.5 62:38 96

NaEDA/EDA: THF (1:1) 50 68:32 98

Table 1

Isomerization of(Z,E)-2-octen-4-yn-1-00l with LIEDA/EDA and NaEDA/EDA
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The product of butylation was isolated as described in the previous
experiment. Then, 208 mg of a mixture consisting of 60% of the

alkylation product and 40% of (Z,E)-5-octen-7-yn-1-ol was prepared.

BC NMR of Z-isomer & =13.6 (C-12); 19.1 (C-9); 22.0 (C-11); 25.1

(C-3); 29.7 (C-4); 31.0 (C-10); 32.2 (C-2);
62.8 (C-1); 78.2 (C-7); 85.1 (C-8); 110.0

(C-6); 141.8 (C-5).
of E-isomer & = 13.6 (C-12); 19.2 (C-9); 22.0 (C-11); 25.1

(C-3); 32.6 (C-4); 31.0 (C-10); 32.2 (C-2);
62.8 (C-1); 78.2 (C-7); 85.1 (C-8); 110.5

‚ (C-6); 142.6 (C-5).

IR (cm™"): 3400 (—OH); 1054 (—C—O0); 2209 (C=C); 3025 (=CH—);
1668, 958 (E C=C), 1641, 738 (Z C=C); 1380 (CHs;).

DISCUSSION

Isomerization of the triple bond of (Z,E)-2-octen-4-yn-1-ol was

relatively fast even with LIEDA/EDA. The reaction was complete after
20 min at 5-10°C. Temperature and the addition of THF as a cosolvent
had no significant influence on the isomeric composition of the product.
When a stronger super base NaEDA/EDA was used substantial
isomerization of Z-enynol to E-isomer was detected. The ratio of Z/E
isomers decreased at higher temperatures and at longer reaction times
from the value of 3:1 to 1:3. The addition of THF decreased the basicity
of the system and Z-E isomerization to the extent of only a fewper cent

was observed.

n-Bul 15 60

n-Bul+THF 30 65

n-BuBr 20 35

n-BuBr+THF 20 —50 (impurities)

n-BuCl 20 40

n-BuCIH+THF 30 min—-1 h 37

n-BuTos 20 14

CH,I 20 25

H,C=CHCH,Br 20 min-1 h 9

CH;Br 30 min-1 h no reaction

CH;CH,CI 30 min-1 h no reaction

Table 2

Alkylation of dilithium derivative of (Z,E)-5-octen-7-yn-1-ol
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By alkylation in situ of the metallated derivative of (Z,E)-5-octen-7-
yn-1-ol several routes ofthe reaction are possible:

LiEDA is a very strong base and causes a reasonable elimination of the

alkylating agent. Even the dilithium derivative of (Z,E)-5-octen-7-yn-1-ol
seems to be strong enough for the elimination. As a result of this

undesirable reaction the dilithium derivative will be demetallated and the

alkylation cannot be brought to completion. It was tried to reduce the

basicity of reagents by adding THF. However, the addition of THF

increased the yield of alkylation with n-Bul and n-Bußr only by 5 and

15%, respectively. The highest yield of alkylation was obtained by using
butyl iodide, which is the best soft electrofile compared to other reagents
used. As expected, by the alkylation of the dilithium derivative only
traces of O-alkylation products were detected. In case of NaEDA/EDA a

very complicated mixture of C-, O-, C,O-alkylation and some other

products was obtained, as expected.
We conclude that the anionotropic isomerization of (Z,E)-2-octen-4-

yn-1-ol is an excellent reaction for the preparation of terminal enynols
and it could be useful for other homologues. The alkylation in situ is also

very promising and could be improved after decreasing the basicity of the

system.
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(Z,E)-2-OKTEEN-4-ÜÜN-1-OOLI ISOMERISATSIOON JA
JÄRGNEV ALKÜLEERIMINE KUI “ÜHEPAJA” SÜNTEES

SUPERALUSELISES KESKKONNAS

Uno MÄEORG, Lea TALU, Kaja KALLAS

On uuritud (Z,E)-2-okteen-4-üün-1-ooli enüünse bloki anionotroopset
isomerisatsiooni erinevates superalustes MNH(CH,),NH,/H,N(CH,),NH,
(M = Li, Na) ja saadud metalleeritud derivaadi vahetut alküleerimist. On
käsitletud superaluse tugevuse ja alküleerivate agentide möju isomeri-
satsiooni- ja alküleerimisproduktide saagisele ning koostisele.
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