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Abstract. (Z)-14-heptadecen-2-yn-1-ol, (E)-2-octadecen-13-yn-1-ol, and 2,13-octadecadiyn-1-ol
were synthesized and their behaviour in super basic systems MNH(CH,),NH,/H,N(CH,),NH,
(M = Li, Na, K) was studied. Instead of the expected products—alcohols with a terminal triple
bond—corresponding alkynes as products of the retro-Favorskii type defragmentation reaction was
detected.Using the most effective superbase KNH(CH,)NH,/H,N(CH,),NH, the —CH,OH
fragment was removed and the corresponding terminal alkynes with a yield of 83-95% were
prepared. (E)-2-octadecen-13-yn-1-ol gave under the same conditions a very complicated mixture
of compounds.
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INTRODUCTION

The isomerization of the carbon—carbon triple bond along the
carbon chain in alkynes and alkynoles is well known. In 1975
Brown introduced the system KNH(CH,);NH,/H,N(CH,);NH, for
the isomerization (acetylenic zipper) as a synthetic method for
the preparation of 1-alkynes and w-alkynols [1, 2]. This
method was modified later by Abrams, who successfully used
MNH(CH,),NH,/H,N(CH,),NH, (M = Li, Na, K; n = 2, 3) [3, 4]. The
method gives terminal alkynes or alkynoles from good to excellent
yield. By the isomerization of acetylenic carboxylic acids 3,5-dienic
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acids were obtained [5]. Isomerization of conjugated alkadiynes and
hydroxydiynes gives the corresponding terminal diynic derivatives with
good and poor yield respectively [6, 7]. Abrams demonstrated a selective
isomerization of 2,13-tetradecadiyn-1-ol to the 3,13-tetradecadiyn in
LiNH(CH,),NH,/H,N(CH,),NH, with 50% yield [5]. The moving of the
triple bond from the internal to the terminal position is believed to be a
concerted multiple alkyn-allene isomerization process [1, 2, 8].

No data are available on the isomerization of any type of enynols and
nonconjugated diynols with a nonterminal triple bond. It was very
attractive to investigate the isomerization of these relatively easily
available compounds. The expected products — conjugated enynols and
diynols — could be very useful building blocks for the synthesis of wide
spectra of biologically active compounds or materials for nonlinear optics.

EXPERIMENTAL

Infrared spectra of compounds in the form of neat hqulds were
recorded on a Specord M82 (Carl Zeiss, Jena) spectrometer. The 'H and
BC NMR spectra were measured with a Bruker AC200P spectrometer at
200 MHz and 50 MHz, respectively. Chemical shifts are reported relative
to TMS in CDCl;. GC-MS analyses were done on a Saturn 3 (Varian)
instrument with 50-70 eV ionization energy using a DB-5 fused silica
capillary column 30 m X 0.32 mm. GLC analyses were performed on a
Fractovap 4160 series (Carlo Erba Strumentazione) capillary gas
chromatograph and Chrom 5 (Laboratorni Przistroje, Praha) equipped
with FID, using fused silica capillary columns OV-101 25 m X 0.2 mm,
Nordibond NB 20M 25 m x 0.32 mm, and a glass column 2.5 m X 3 mm
packed with 5% Carbowax 20M on a Chromosorb W AW-DMCS 80—
100 mesh.

All experiments were carried out under an atmosphere of dry, CO, and
O, free argon. The starting compounds were synthesized as described in
literature.

(Z)-14-heptadecen-2-yn-1-ol (1) was synthesized from (Z)-11-
tetradecen-1-ol by bromination and alkylation of the dilithium derivative
of 2-propyn-1-ol [9]. Total yield 21%.

BC NMR & = 14.3 (C-17); 18.7 (C-4); 20.5 (C-16); 27.1 (C-13); 28.6—
29.7 (C-5 to C-12); 51.3 (C-1); 78.3 (C-3); 86.6 (C-2);
129.3 (C-14); 131.5 (C-15).

IR (em™): 3340 (—OH); 3003 (=CH—); 2287, 2225 (C=C); 1653
(Z C=C): 1015 (—C—O0); 721 (—CHy-pe + Z C=C).

2.13-Octadecadiyn-1-ol (2) was synthesized from 1-bromo-9-penta-

decyn by alkylation of the dilithium derivative of 2-propyn-1-ol [9].
Total yield 27%.
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3C NMR 8 = 13.6 (C-18); 18.6 (C-15, C-12, and C-4); 22.0 (C-17);
28.7-29.7 (C-5 to C-11); 31.4 (C-16); 51.4 (C-1): 78.6
(C-3); 80.2 (C-13 and C-14); 86.6 (C-2).

IR (em’'): 3370 (—OH); 2293, 2230 (C=C); 1015 (—C—0); 724
(_CHZ'mck ) .

(E)-2-octadecen-13-yn-1-ol (3) was synthesized by the reduction of
(2) with LiAlH, in THF [10]. Yield 63%.

BC NMR & = 13.6 (C-18); 18.4-18.7 (C-12 and C-15); 21.9 (C-17);
28.8-29.4 (C-5 to C-11); 31.3 (C-4); 32.2 (C-16); 63.8
(C-1); 80.2 (C-13 and C-14); 128.8 (C-2); 133.5 (C-3).

IR (cm™): 3337 (—OH); 3010 (=CH—); 1669, 969 (E C=C): 1006
(—C—O), 723 (_CHZ'rock)'

Typical isomerization procedure

All reactions were carried out in dry ethylenediamine distilled several
times from sodium under the atmosphere of pure argon on magnetic
stirrer, using 1.2 M solutions of super base in 7 equivalents per alcohol.
Lithium ethylenediamide (LiEDA) was prepared from lithium grains in
EDA by heating at 50°C for 0.5 h. NaEDA was formed by the reaction of
NaNH, with EDA at room temperature for 1.5 h. KEDA was prepared by
adding a stoichiometric amount of K-t-BuO to LiEDA. All experiments
were done in the mmolar scale.

For the work-up the reaction mixture was poured to ice, water was
added, extracted with diethyl ether (3 times), ether extracts were
acidified, washed to neutral with brine, dried (MgSQO,), evaporated to
dryness, and purified by column chromatography on silica using hexane—
diethyl ether (2:1) as eluent.

The experiment of compound (1) with NaEDA for 30 h gave (Z)-13-
hexadecen-1-yn with 83% yield.

3C NMR & = 14.4 (C-16); 18.4 (C-3); 20.5 (C-15); 27.1 (C-12); 29.5
(C-4 to C-11); 68.0 (C-1); 84.8 (C-2); 129.3 (C-13); 131.5
(C-14).

IR (em’'): 3313 (=CH); 3006 (=CH—); 2123 (=C—); 1654 (=CH.;,-);
724 (—CH,-,,.;); 631 (=CH).

MS:
M/Z | Intensity, % I Fragment
39 45 CH,—C=CH
41 100 *CH—CH,CH,
55 65 *CH—CH,CH,CH,
67 56 HC=C—CH,CH,CH,
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Under the same conditions compound (2) gave 1,12-heptadecadiyn
with 85-95% yield.

3C NMR § = 13.5 (C-17); 18.4 (C-11); 18.7 (C-3); 22.6 (C-14); 24.7
(C-16); 28.2—29.7 (C-4 to C-10); 31.3 (C-15); 68.0
(C-1); 80.1 (C-12 and C-13); 84.7 (C-2).

IR (cm'l): 3313 (=CH), 2123 (—C=CH); 1333 (=CH); 725 (—CHy-,0);

630 (—C=CH).
MS:
M/Z | Intensity, % | Fragment
39 63 CH,—C=CH
41 79 *CH—CH,CH,
67 99 CH=C—CH,CH,CH,
81 100 CH,CH,CH,CH,C=C
95 66 CH,CH,CH,CH,C=CCH,

DISCUSSION

It is well known that the reactivity of MEDA is decreasing from K to
Li [4]. However, LiEDA is quite active for the isomerization of alkynols.
Isomerization of (1) with LIEDA was relatively slow probably due to the
presence of a double bond in the molecule. After 5.5 h at 50°C the
reaction stopped and ca 50% of the starting compound was isomerized to
impure (Z)-14-heptadecen-3-yn-1-ol contaminated with other isomeric
(Z)-14-heptadecenyn-1-ols. As the PC NMR spectral data indicated, no
enynols with conjugated double bond were detected and only two signals
of isolated double bond at 129.3 and 131.5 ppm were present. Using
NaEDA the total amount of isomerized (Z)-14-heptadecenyn-1-ols
reached 10-20%. From the very beginning of the reaction a new
unexpected product — (Z)-12-hexadecen-1-yn (4) — appeared. After 30 h
compound (4) with the yield of 83% was obtained. This defragmentation
of —CH,OH seems to be a retro-Favorskii type reaction, which is not
correctly described for primary propargyl alcohols. The isomerization of
the triple bond seems to be faster than the formation of a compound with
a terminal triple bond. Therefore, isomerization with KEDA was carried
out to avoid the formation of side product (4). After 3 h (1) was
completely isomerized to a mixture of isomeric (Z})—l4-heptadecen-yn—1-
ols separated by GLC. According to the data of C NMR spectroscopy
of this mixture the triple bond was not present and some new signals
appeared in the double bond region (119; 124; 130; 132). Later the
defragmentation was started even at room temperature.

The isomerization process of compound (2) with NaEDA was similar
to the previous compound. After 3 h 14% of isomerized octadecadiynols

137



and 36% of 1,12-heptadiyn (5) were formed, but after 21 h (5) with an
excellent yield of 85-95% was obtained. In the presence of KEDA at
70°C after 0.5 h only a mixture of isomeric alcohols was detected.
Longer reaction gave only compound (5).

The treatment of (E)-2-octadecen-13-yn-1-ol with LiIEDA, NaEDA,
and KEDA yielded unexpectedly a very complicated mixture consisting
of 15 hydrocarbons. The mechanism of the formation of these
compounds remains yet unsolved.

For the verification of our idea of a retro-Favorskii reaction 2-decyn-
1-ol was treated with one equivalent of NaEDA at 50°C for 30 h. Under
these conditions the isomerization of the triple bond is practically
excluded and only 1-nonyne was formed.

We can conclude that by the isomerization of 2-alkyn-1-ols in
MEDA/EDA super bases a parallel retro-Favorskii reaction is taking
place and the composition of the product depends on the relative rates of
these reactions. The reaction with NaEDA is already of preparative value.
However, KEDA gave selectively the isomerization of the triple bond,
the products obtained contained a mixture of several isomeric alkenynols
or alkadiynols.
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MONEDE ENUUNOOLIDE JA UHE DIUUNOOLI
KAITUMINE SUPERALUSELISTES SUSTEEMIDES
MNH(CH,),NH,/ H,N(CH,),NH,

Uno MAEORG, Kaja KALLAS, Side VIIRLAID, Tonis PEHK,
Anu MERISTE

On siinteesitud (Z)-14-heptadetseen-2-iiiin-1-o0l, (E)-2-oktadetseen-
13-iiiin-1-o00l ja 2,13-oktadekadiiiiin-1-ool ning uuritud nende kditumist
erinevates superalustes MNH(CH,),NH,/H,N(CH,),NH, (M = Li, Na, K).
On avastatud 2-alkiiiin-1-oolide retro-Favorski tiilipi defragmenteeru-
mine. On uuritud erinevate superaluste ja reaktsiooniaja mdju produkti

koostisele.
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