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Abstract. Laboratory batch kinetics and isotherm studies were conducted to evaluate the

adsorption capacities of natural and granulated peat. The effects of contact time, pH, initial

concentrations ofadsorbate, and temperature on adsorption were studied.

Natural and granulated peat were found tobe effective adsorbents for cadmium. The

equilibrium in the adsorption of cadmium on natural and granulated peat was reached during 15

and 60 min respectively. The maximum amount of cadmium adsorbed on natural peat was found

tobe in the pH range from 3 to 6 and on granulated peat at pH > 4. Adsorption data were found

not to fit well with the Langmuir and Freundlich isotherms. The adsorption of cadmium on

granulated peat was found tobe endothermic, while the temperature dependence of cadmium

adsorption on natural peat was notclearly expressed.
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INTRODUCTION

Research by several investigators has shown that peat is an effective

adsorbent for the removal of heavy metals from waste water [l—7]. The

abundance of peat and its easy availability make it an economical

adsorbent [B].
Peat is a complex material, with lignite and cellulose as major

constituents. The polar functional groups of lignin and humic fractions,
which include alcohols, aldehydes, ketones, acids, phenolic hydroxides,
and ethers, are involved in the formation of chemical bonds [9].

Natural peat may be used for the adsorption of metals without

pretreatment. However, the removal efficiency may be adversely affected

by the characteristics of natural peat: its low mechanical strength, a high
affinity to water, and tendency to swell [lo]. These tendencies can be

avoided by using granulated peat [ll].
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Laboratory batch kinetics and isotherm studies were conducted to

evaluate the adsorption capacities of natural and granulated peat. The

effects of contact time, pH, initial concentrations of adsorbate, and

temperature on adsorption were studied.

EXPERIMENTAL

The natural peat used in this study was collected from Lange bog near

Tartu in the south of Estonia. The raw material for granulated peat
originated from the same bog and it was manufactured by Rait-Hiio

Mikelsaar, Tartu, Estonia.

The kinetics of the adsorption of cadmium by peat was studied ın

batch experiments. To determine the equilibrium time 2.5 g of peat was

added to each flask containing 500 ml of 4 mg/l cadmium solution (pH 5)
and the mixture was stirred at 160 rpm for 1 or 2 hours. At different

intervals, samples (5 ml) were drawn, filtered through a 0.45 um Himifil

membrane filter, and analysed for cadmium concentrations using a

Varian SpectrAA2so + flame atomic absorption spectrophotometer.
The effect of pH on the adsorption of cadmium was determined by

stirring 1 g of peat with 100 ml of 4 mg/l cadmium solution, in each of

the flasks for equilibrium time. The pH range studied was 2.0-9.0. The

pH of the solutions was adjusted using HNO; and NaOH solutions.

Batch isotherm studies were carried out at 5, 10, 20, and 30°C. The

adsorption curves were obtained using seven solutions of concentrations

5, 10, 20, 40, 60, 80, and 100 mgCd/l. A 100 ml quantity of each solution

(pH 4.5 to 5) was mixed with 1 g of peat and shaken for equilibrium
time.

RESULTS AND DISCUSSION

Batch kinetic studies
A plot of the cadmium concentration in solid phase versus time

(Fig. 1) showed that equilibrium was reached in 15 min in the adsorption
of cadmium on peat. No further significant adsorption was noted beyond
the 15 min period. Similar kinetic studies conducted for cadmium

adsorption on granulated peat showed that equilibrium was reached in

60 min (Fig. 1). The difference in equilibrium time may be due to slower

transport of cadmium ions to the active sites of granulated peat.
The equilibrium period of 15 min for cadmium adsorption by peat

obtained in this study is equal to the equilibrium time reported by
Chipei et al. [l2] and less than 2 hour equilibrium time reported by
Viraraghavan & Rao [l3] for horticultural sphagnum peat. The difference
in equilibrium time may be due to the aqueous medium in which the batch
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experiments were conducted. Viraraghavan & Rao used spiced municipal
waste water and therefore interferences by other organic and inorganic
compounds were possible.

Adsorption at various pH values

The effect of pH on the adsorption of cadmium on natural and

granulated peat is shown in Fig. 2. The pH range studied was from 2 to 9

Fig. 1. Equilibrium time for the adsorption ofcadmium on natural and granulated peat.

Fig. 2. Effect ofpH on the adsorption of cadmium on natural and granulated peat.
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to prevent the hydrogen ions from exchanging with cadmium (pH < 2)
and hydrolysis of the cadmium tons (pH > 9).

The maximum amount ofcadmium adsorbed on peat was found to be

in the pH range from 3 to 6. Lower pH tended to decrease the adsorption
of cadmium indicating that the hydrogen ions were competing with the

metal ions for the adsorption sites. The adsorption of cadmium on

granulated peat increased at pH > 4. According to Viraraghavan & Rao

[l3] peat was found to adsorb a maximum amount of the cadmium in the

pH range from4 to 5.

Adsorption at different temperatures
Batch isotherm studies were carried out at 5, 10, 20, and 30°C. The

adsorption curves were obtained using seven solutions of cadmium

ranging from 5 to 100 mg/1.
The following linear forms of Langmuir and Freundlich equations

were used [14,15]:
Langmuir equation: I' = V/T'm + 0/T'm X 1/C

Freundlich equation: I' =log K¢+ 1/n log C

where I” - equilibrium solid-phase concentration, mg/g;
I'm — constant, maximal equilibrium solid-phase concentration,

mg/g;
o — constant of Langmuir isotherm, o = 1/K;
K — adsorption equilibrium constant of Langmuir isotherm;
C — concentration of solute in solution at equilibrium, mg/l;
n, Kr — Freundlich adsorption isotherm constants.

Typical plots of Langmuir isotherms for cadmium adsorption by
natural and granulated peat at 20°C are shown in Fig. 3. The adsorption
data were not found to fit well with the Langmuir and Freundlich isotherms

Fig. 3. Linearized Langmuir isotherms for cadmium adsorption on natural and granulated
peat at 20°C.
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in reciprocal coordinates, but showed strong correlation (R > 0.9)
between X and Y. Langmuir and Freundlich isotherm equations for the

adsorption of cadmium on natural and granulated peat for various

temperatures are given in Table 1.

The Langmuir and Freundlich constants (Table 2), indicating adsorption
capacity and energy, show that the adsorption capacity of granulated peat
1s higher at 30 °C than at 5 °C, which signifies increased adsorption with

°C equation coeff. equation coeff.

Natural peat

10 1/T”= 400 (1/C) + 7.64 0.984 logI'=0.704 (log C) +0.311 0.974

20 Ur=174 (1/C) + 127 0.999 log I'=0.632 (log C) + 0.423 0.996

30 1/T" =504 (1/C) - 80.9 0.890 logI"'=0.877 (log C) + 0.348 0.960

Granulated peat

5 1/T"=2300 (1/C) + 407 0.986 log I'=0.499 (log C) - 0.391 0.994

10 T =1720 (1/C) + 362 0.996 log I'=0.455 (log C) — 0.284 0.989

20 1/T=1050 (1/C) + 251 0.997 log I'=0.497 (log C)- 0.158 0.983

30 1T =1300 (1/C) + 215 0.998 log I'=0.549 (log C)- 0.205 0.980

Table 1

Langmuir and Freundlich equations for the adsorption of cadmium

on natural and granulated peat

Temperature, Freundlich constants

Natural peat

10 0.13 0.019 2.05 0.704

20 0.0079 0.73 2.65 0.632

30 — 0.012 — 0.16 2.24 0.877

Granulated peat

5 0.0025 0.17 0.406 0.499

10 0.0028 0.21 0.520 0.455

20 0.0040 0.24 0.695 0.497

30 0.0047 0.16 0.624 0.549

Table 2

Langmuir and Freundlich constants for cadmium adsorption on natural and granulatedpeat



128

increasing temperature. The adsorption of cadmium on granulated peat
was found tobe an endothermic process. Viraraghavan & Rao [l3] found

the adsorption of chromium on horticultural peat tobe endothermic. The

temperature dependence of cadmium adsorption on peat was low and not

clearly expressed.

CONCLUSIONS

Natural and granulated peat were found tobe effective adsorbents for

cadmium. The kinetic studies indicated that equilibrium in the adsorption
of cadmium on natural and granulated peat was reached respectively
during 15 and 60 min. The maximum amount of cadmium adsorbed on

natural peat was found tobe in the pH range from 3 to 6 and on

granulated peat at pH > 4. Adsorption data were found not to fit well with

the Langmuir and Freundlich isotherms but they showed strong
correlation between X and Y. It was found that the adsorption capacity of

granulated peat was lower at lower temperatures (endothermic process),
while the temperature dependence of cadmium adsorption on natural peat
was low and not clearly expressed.
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RASKMETALLIDE ADSORPTSIOON TÖÖTLEMATA JA

GRANULEERITUD TURBAL KAADMIUMI NÄITEL

Ülis SÖUKAND. Reet TUNGEL. Toomas TENNO

On uuritud kaadmiumioonide adsorptsiooni kohalikul turbal söltuvalt

adsorbeeruva aine kontsentratsioonist, tingimustest (pH, temperatuur) ja
ajast.

Töötlemata turba puhul saabus adsorptsiooni maksimum 15 minuti

jooksul ja granuleeritud turba puhul 60 minutiga. Adsorptsioon oli
maksimaalne pH vahemikus 3—6, granuleeritud turvas adsorbeeris maksi-

maalse koguse kaadmiumi, kui pH>4. Turvaste adsorptsiooni uuriti

temperatuuril 5, 10, 20 ja 30°C. Leiti, et katsete käigus saadud andmed ei

korreleeru päris hästi ei Langmuiri ega Freundlichi isotermidega, kuigi
korrelatsioonikoefitsiendid näitavad tugevat korrelatsiooni. Langmuiri ja
Freundlichi konstantide järgi on näha, et granuleeritud turba adsorpt-
siooniline mahutavus on suurem kõrgemal temperatuuril. See viitab

endotermilisele protsessile. Kaadmiumi adsorptsioon töötlemata turbal

sõltub temperatuurist vähe ja sõltuvuse suund ei ole selgelt väljendunud.
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