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Abstract. It has been demonstrated that it is possible to determine the constitutional water content

in organogenous rocks by means of high-resolution thermogravimetry. The content of hydration
water in the non-carbonate mineral portion of solid fuels is not constant and has a tendency to

decrease with increasing content of this material in a caustobiolith.
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The lack of trustworthy methods for estimating the water contained in

minerals, in the first place aluminosilicates, present in fossil solid fuels

causes the most considerable error in the determination of their organic
matter content. It is, of course, true that quite an adequate picture can be

obtained on the basis of the results of a full mineralogical analysis of the

inorganic part of the rock. However, this procedure is very labour-

consuming and besides it, there is always a portion of amorphous mineral
material not registered by such an analysis. Separating the mineral part by
removing the organic portion by its complete oxidation [l] is also quite
time-consuming and is associated with several side reactions. Therefore,
in routine analysis the presence of hydrates water is usually ignored,
though the mistake in estimating the organic content of a fuel can reach in
this case 20—30% and more, especially when analysing ash-rich rocks such
as oil shales. Attempts have been made to approach the problem with more

accuracy.
Thus, it has been assumed that all clay minerals or those present in

various layers of a certain deposit have practically the same composition
and, consequently, the same mineral water content. According to [2, 3]
aluminosilicates and gypsum present in solid fuels contain on the average
8-10% of hydrates water, for kukersite shale its content is estimated to be
2.5-3% [4, s], for Turovo oil shale (Belarus) about 3.6% [6], and for

Dictyonema shale (Estonia) 2.3% [7]. As to the graphical methods [§],
also only average values can be estimated with their help.
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In the present work, it has been established that in the case of high-
resolution thermogravimetric analysis the constitutional water of solid
fuels forms a well defined peak in the region of 520-580°C (Figs. 1 and 2).
The work was carried out in Duke University, North Carolina, USA; a

Perkin-Elmer Series 7 thermograph was used (heating rate 10°C/min, N,
as carrier gas). All in all, 39 solid fuel samples, most of them oil shales,
have been analysed, 25 of these as mostrepresentative were investigated

Fig. 1. DTG curve for Lyuban oil shale, layer Ia (Belarus).

Fig. 2. DTG curve for Chagansk oil shale (OrenburgDistrict, Russia)
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more thoroughly (repeated experiments with the same sample); see the

Table. Among the samples analysed some young sediments (sapropelic
mud of Lahepera Lake, Estonia, and balkhashite of Lake Balkhash,
Kazakhstan), a brown coal of Novo-Dmitrovo, Ukraine, and Riphean
graphitic rocks of East Siberia, Irkutsk District, Russia, were also

represented. More detailed characteristics of the fuels investigated can be
found in [9].

It is evident from Figs. 1 and 2 that, besides constitutional water,
carbonates derived carbon dioxide also forms a well separated peak on

thermograms in the region of620—770°C.

As it is sometimes difficult to obtain reliable guantitative data by
thermogravimetry (very small sample size combined with problems in

collecting a representative portion of a solid heterogeneous mixture,
possible entrainment of the material by carrier gases, etc.), it seems tobe
more convenient and exact to proceed from the thermogravimetrically
determined ratio of the amount of the hydrates water to that of carbon
dioxide derived from carbonates, and from the total carbon dioxide
content of the sample, measured by the standard laboratory procedure
(via decomposition of carbonates by an acid). The crystal-hydrate water

content of the rock, Wž,[ ‚
1s then found as follows:

Wd
d M d

W, =|——| x| (CO,)
,M [(Coz);]r [ 2 M]S

d

WM
where |— —— | — ratio ofconstitutional water content and carbonates

(CO,) M/7
derived carbon dioxide content determined by
thermogravimetry;

d
..[(COZ) ] — content of the carbonates carbon dioxide deter-

MJS .

mined by the standard laboratory procedure.

The results obtained are given in the Table, the content of hydrates
water in the samples investigated varies in quite large limits (from 0.1 to

4.9%). Ifthe rock contains, for example, 20% of organic matter and 4% of

constitutional water, the relative error in estimating the content of the

former, if one ignores the water presence, will be 20%. Proceeding from
the data obtained we also examined the above-mentioned hypothesis about
various fossil fuels having similar composition of clays contained in them,
at least as to the content of hydrates water. Actually, it is obvious from the
table that the minerals water content in the non-carbonate portion of

mineral matter varies in the case ofrocks investigated from 0.2 to 9.4%.

(1)
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Therefore, it is certainly not correct to use some kind of average values as

a base forcalculations.
It is interesting to note that the minerals water content in the non-

carbonate mineral material depends to some extent on the content of this
material in the rock (Fig. 3). This correlation seems tobe inversely
proportional. According to the results of statistical analysis

W, = RLAOO)|+6.436,

1
.

where WIE; l bar content of hydrates water in the non-carbonate part
ofmineral matter, %;

A* — ash, dry sample basis, %;
d

. ..

(C0,),, — carbonates derived carbon dioxide, %.
2’ M

Content of constitutional water

Deposit, outcrop Geological age in dry
in the non-

sample carbonate portion
ofmineral matter

Graphitic argillite, Irkutsk, Russia Riphean 4.93 5.70

Dictyonema shale, Maardu, Estonia Ordovician 0.16 0.24

Selennyakh, Yakutia, Russia Devonian 0.62 6.32

Lyuban, Belarus: layer Ia Devonian 0.97 1.84

layer Ib Devonian 0.76 1.72

layer IIa Devonian 0.65 1.12

layer IIb Devonian 0.86 1.92

Turovo, Belarus Devonian 4.85 8.98

Ukhta, Komi, Russia Devonian 0.64 1.35

Kenderlyk, Kazakhstan Carboniferous 0.51 0.69

Edge, Spitzbergen Archipelago Triassic 0.81 1.13

Levyi Kedon, East Siberia Triassic 0.24 0.24

Kashpir, Volga basin, Russia: layer I Jurassic 2.17 9.42

layer II Jurassic 2.20 4.61

layer III Jurassic 1.93 3.28

Syssol, Komi, Russia Jurassic 1.05 1.75

Chagansk, Orenburg, Russia Jurassic 1.60 6.16

Ukhta, Komi, Russia Jurassic 1.56 4.73
Borov Dol, Bulgaria Eocene 1.25 1.70

Krasava, Bulgaria Eocene 1.14 1.97

Baisun, Uzbekistan Eocene 2.37 5.08
East Urtabulak, Uzbekistan Eocene 2.03 4.41

East Chandyr, Uzbekistan Eocene 1.90 4.84

Novo-Dmitrovo, Ukraine: oil shale Tertiary 0.78 1.16

brown coal Tertiary 0.13 1.30

Content ofconstitutional water in fossil fuels investigated, wt.-%

(2)
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The correlation coefficient R = 0.480 and the level of confidence P>0.98.

This tendency is revealed especially well in the case of Kashpir shale

(dotted line inFig. 3).
If we exclude from the samples examined those four rocks that are

outside the main pathway in Fig. 3 and are prevailingly not typical oil
shales (brown coal, graphite rock, thermally very profoundly transformed

Selennyakh shale, and Turovo shale), we will have:

Wy = -0.095[A“-1.27((CO„)%)] +7.789

with R = 0.872 and P>0.99.

This means that, as a general rule, the more there is non-carbonate
material in a solid fuel the lower is the constitutional water content in this
material. We are of the opinion that this phenomenon is connected with a

relatively more extensive accumulation ofcoarser, free from hydrate water

or low in it minerals (quartz, feldspar, etc.) in the case of a large scale
transportation of terrigenous material into the sedimentation basin.

Fig. 3. Dependence of the hydrates water content in the non-carbonate mineral material, Wš;0 ‚on

the latter’s content in the rock [Ad -1 .27((COZ):! )] . The dotted line designatesKashpir shale.

(3)
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CONCLUSIONS
)

I.ln the case of high-performance thermogravimetry the crystal-
hydrate water contained in the mineral portion of fossil fuels forms a well

defined peak in the region of 520-580°C. This circumstance can be used

for estimating the content of this kind of water in organogenousrocks.

2. When determining the constitutional water content it is more

convenient and exact to proceed from the thermogravimetrically
determined ratio of the amount of this water to that of the carbonates

derived carbon dioxide, and from the total carbon dioxide content of the

sample measured by standard laboratory procedure.
3. The hydrates water content in the non-carbonate portion of mineral

matter varies substantially, and therefore it is not correct to use some kind

of average values as a base for the calculations of the organic content.

4. With the increasing non-carbonate material content in solid fuels the

constitutional water content in this material has a tendency to diminish.

This is probably associated with a more extensive accumulation of coarser,
constitutional water poor minerals when the transportation of terrigenous
material into the sedimentation basin takes place on a large scale.
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ÜHESTVÕIMALUSEST SAVIDE HÜDRAATVEE SISALDUSE
MÄÄRAMISEKS TAHKEKÜTUSTES

Kaarlı UROV, Mihkel KOEL

On näidatud, et termogravimeetria abil on vöimalik määrata tahke-

kütuste kristallhüdraatide veesisaldust. Erinevalt levinud oletusest, et fos-

siilsetes kütustes esinevad savid ei erine oluliselt hüdraatvee sisalduse

poolest, selgus, et selle kogus köigub väga laiades piirides, mistöttu mingit
keskmist suurust orgaanilise aine sisalduse arvutamisel aluseks vötta ei ole

öige. Seejuures on kaustobioliitide mineraalosa mittekarbonaatse frakt-

siooni kristallvee sisaldus esimeses lähenduses pöördvõrdeline selle mine-

raalaine osa sisaldusega kütuses. See on töenäoliselt tingitud jämedama,
hüdraatvett vähe sisaldava materjali ladestumisest terrigeense materjali
intensiivse kandumise korral settebasseini.
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